工业工程 ›› 2012, Vol. 15 ›› Issue (4): 17-20.

• 专题论述 • 上一篇    下一篇

基于粒子群BP神经网络的质量预测模型

  

  1. (1.南京航空航天大学 经济与管理学院,江苏 南京 210016;2. 江苏科技大学 经济管理学院,江苏 镇江 212003)
  • 出版日期:2012-08-31 发布日期:2012-09-19
  • 作者简介:徐兰(1982-),女,江苏省人,讲师,博士研究生,主要研究方向为质量工程、稳健设计.
  • 基金资助:

    国家自然科学青年基金资助项目(71002046);江苏省教育厅高校哲学社会科学研究基金资助项目(2012SJB630017)

Quality Prediction Model by Using PSO-BP Neural Network

  1. (1. School of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China; 2. School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 212003, China)
  • Online:2012-08-31 Published:2012-09-19

摘要: 为了对产品质量进行预测控制、辅助新产品开发设计、寻找最优参数,将测试样本的网络输出值与真值之间的灰色关联度作为目标函数,采用粒子群算法优化了BP神经网络的权系数和阈值,构建了基于粒子群神经网络的质量预测模型。所提出的PSO-GRG算法解决了一般BP算法迭代速度慢,且易出现局部最优的问题,并以注塑件质量预测为例,进行算法实现,仿真结果表明本文所提出的PSO-GRG算法比BP算法迭代次数减少了87.5%,并避免了局部最优,且预测误差亦明显减少。得出结论:所构建的质量预测模型具有较高的预测精度和研究价值。

关键词: 粒子群算法, BP神经网络, 质量预测, 灰色关联度

Abstract: For quality assurance, it is very important to make effective quality prediction in the stage of product design and parameter optimization. To do so, by using PSO (particle swarm optimization) and BP (back propagation) neural network, a quality prediction model is established. It is an optimization problem with grey incidence degree between the networks output and input as objective. PSO algorithm is used to optimize the BP neural networks weight coefficient and threshold value. Then, a PSO-GRG (grey relational grade) algorithm is proposed to solve the problem. This algorithm overcomes general BP algorithms shortcomings of slow convergence and local optimum solution. A case problem of injection molding is used to verify the proposed method. Simulation results show that the prediction errors are significantly reduced with the number of iterations being reduced by 87.5%.

Key words: particle swarm optimization(PSO) algorithm, back propagation(BP) neural network, quality prediction; grey relational grade