工业工程 ›› 2015, Vol. 18 ›› Issue (5): 107-114.

• 专题论述 • 上一篇    下一篇

沿海产业合作污染治理的微分对策

  

  1. (1. 天津大学 管理与经济学部, 天津 300072;2.天津理工大学 循环经济与企业可持续发展研究中心,天津 300384)
  • 出版日期:2015-10-31 发布日期:2016-03-24
  • 作者简介:王博(1984-),女,黑龙江省人,博士研究生,主要研究方向为工业工程.
  • 基金资助:

    教育部人文社会科学研究规划基金资助项目(11YJA630046);天津市经信委资助项目(2010-KT-009(2));天津市高等学校创新团队培养计划资助

A Study on Coastal Industrial Pollution Cooperative Governance Differential Game

  1. (1.College of Management and Economics, Tianjin University, Tianjin 300072, China; 2. Research Center of Circular Economy and Enterprise Sustainable Development, Tianjin University of Technology, Tianjin 300384, China)
  • Online:2015-10-31 Published:2016-03-24

摘要: 构建了基于连续时间的海洋产业和陆域产业关于沿海环境建设项目中投资合作的微分对策动态模型,运用汉密尔顿-亚柯比-贝尔曼方程求出海洋产业和陆域产业在Nash非合作博弈、Stackelberg主从博弈及协同合作博弈情形下的最优策略,并对反馈均衡结果进行了比较。研究结果显示,与另外两种博弈情形相比,协同合作博弈情形下的系统收益最大,沿海污染存量最少;Stackelberg主从博弈情形下的收益水平与污染存量都优于Nash非合作博弈情形下的收益水平和污染存量,且在Stackelberg主从博弈情形下,海洋产业的激励因子在沿海环境投资建设中具有协调和激励作用,可以提高海陆产业双方以及沿海产业整个系统的收益,得出该情形下海洋产业和陆域产业在沿海环境投资建设中的系统最优收益分配比例,使得沿海产业总系统利润最大化。

关键词: 污染治理, 产业合作, 微分对策, 反馈均衡

Abstract: A model based on continuous-time differential dynamic game of coastal industrial environmental construction is established. And a set of optimal strategies under Nash, Stackelberg and collaborative game are obtained, and the result of the feedback compared and analyzed with the Hamilton-Jacobi-Bellman equation. Results show that system revenue is highest and the coastal area pollutants quantity is lowest under collaborative than that of non-cooperative Nash and Stackelberg game. The system revenue is higher and the coastal area pollutants quantity is lower under Stackelberg game than that of non-cooperative Nash. Also, the marine industry incentive factors in the construction of the Marine environment investment have coordination and incentive effect, which can improve the coastal industry system revenue. The optimal revenue distribution proportion between marine and terrestrial industry in the coastal environmental construction is also obtained, which can maximize the profit of coastal industrial system. 

Key words: pollution control, industrial cooperation, differential game, feedback equilibrium 