工业工程 ›› 2019, Vol. 22 ›› Issue (2): 57-66.doi: 10.3969/j.issn.1007-7375.2019.02.008

• 专题论述 • 上一篇    下一篇

需求受相关性影响的设备备件库存优化

罗薇1, 符卓2, 董伟1   

  1. 1. 桂林理工大学 现代企业管理研究中心, 广西 桂林 541004;
    2. 中南大学 交通运输工程学院, 湖南 长沙 410075
  • 收稿日期:2018-05-21 出版日期:2019-04-30 发布日期:2019-04-22
  • 作者简介:罗薇(1978-),女,广西壮族自治区人,副教授,博士,主要研究方向为物流工程
  • 基金资助:
    国家自然科学基金资助项目(71463011);广西高校人文社会科学重点研究基地基金资助项目(15QN001)

Optimization of Two Echelon Equipment Spare Parts InventoryAffected by Demand Correlation

LUO Wei1, FU Zhuo2, DONG Wei1   

  1. 1. Research Center of Modern Enterprise Management, Guilin University of Technology, Guilin 541004, China;
    2. School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
  • Received:2018-05-21 Online:2019-04-30 Published:2019-04-22

摘要: 备件多级库存模型通常基于备件需求相互独立的假设,但随着库存系统层次的增加以及协同管理方式的应用,备件需求的相关性将显著影响库存优化决策。针对需求具有相关性的备件库存问题,以服务响应时间为约束条件,以库存成本及缺货成本最小化为目标建立备件两级库存决策模型。引入Nataf概率变换法,利用已知的备件需求边缘概率密度函数构造满足特定相关性条件的随机需求样本,并将蒙特卡洛仿真与遗传算法相结合求解最优库存分配方案。仿真算例证明,设备备件库存的最优决策随着需求相关性系数的增大而发生变化,根据需求相关性的变化适当地调整库存决策,有利于降低备件库存系统总成本,提高库存系统对顾客需求的响应能力。

关键词: 备件库存, 需求相关性, Nataf变换, 蒙特卡洛仿真, 遗传算法

Abstract: The multi-echelon inventory model of spare parts is usually based on the assumption that spare parts demand is independent of each other, but with the increase of inventory system level and the application of collaborative management, the correlation of spare parts demand will significantly affect the inventory optimization decision. Aiming at the problem of spare parts inventory where demands are relevant, a two-echelon inventory decision model for spare parts is established with the constraint of service response time and the goal of minimizing the inventory cost and shortage cost. The Nataf probability transforming is applied to construct the random samples which meet designated correlation condition and probability distribution from obtained marginal probability density function, and the Monte Carlo simulation and genetic algorithm are combined to solve the optimal inventory allocation scheme. Simulation result shows that, the optimal decisions of spare parts inventory change with the increase of correlation coefficient of demand. Adjusting the inventory decision appropriately according to the changes of demand correlation will help reduce the total cost of spare parts inventory system and improve the responsiveness of the inventory system to customer needs.

Key words: spare parts inventory, demand correlation, Nataf transforming, Monte Carlo simulation, genetic algorithm

中图分类号: