工业工程 ›› 2020, Vol. 23 ›› Issue (4): 140-147.doi: 10.3969/j.issn.1007-7375.2020.04.018

• 实践与应用 • 上一篇    下一篇

考虑电量消耗的车辆调度优化研究

王泽, 杨信丰, 刘兰芬   

  1. 兰州交通大学 交通运输学院,甘肃 兰州 730070
  • 收稿日期:2019-05-20 发布日期:2020-08-21
  • 作者简介:王泽(1996-),男,山西省人,硕士研究生,主要研究方向为运输系统优化
  • 基金资助:
    国家自然科学基金资助项目(71761024);中国铁路兰州局集团有限公司2019年科技发展计划资助项目(KY201978)

A Research on Vehicle Scheduling Optimization Considering Power Consumption

WANG Ze, YANG Xinfeng, LIU Lanfen   

  1. School of Traffic & Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
  • Received:2019-05-20 Published:2020-08-21

摘要: 基于电动汽车电量消耗特性,考虑电动车里程、载重、顾客服务时间窗等约束,建立以配送总成本最小为目标的电动车调度优化问题模型;利用自然数编码的遗传算法,求解出电动车的配送路线以及车辆的充电计划,再结合枚举法,在配送中心运营时间内以10 min为时间间隔,计算出配送车辆惩罚成本最小时的最优发车时刻。最后结合算例,验证该模型和方法的有效性、正确性。

关键词: 车辆调度, 电动汽车, 路径规划, 遗传算法, 充电

Abstract: Based on the electric vehicle's power consumption characteristics, considering the constraints of electric vehicle mileage, load, and customer service time window, an electric vehicle scheduling optimization problem model with the minimum total cost of distribution as the target is established, and then uses the genetic algorithm of natural number coding is used to solve the electric vehicle. The distribution route and the charging plan of the vehicle are combined with the enumeration method at a time interval of 10 minutes during the operation time of the distribution center to calculate the optimal starting time when the penalty cost of the delivery vehicle is the smallest. Finally, the validity and correctness of the model and method are verified by an example.

Key words: vehicle scheduling, electric vehicle, path planning, genetic algorithm, charging

中图分类号: