工业工程 ›› 2021, Vol. 24 ›› Issue (6): 48-56.doi: 10.3969/j.issn.1007-7375.2021.06.007

• 专题论述 • 上一篇    下一篇

基于ITD-SVD和MOMEDA的故障特征提取方法

杨静宗, 杨天晴, 吴丽玫   

  1. 保山学院 大数据学院,云南 保山 678000
  • 收稿日期:2020-05-13 发布日期:2022-01-24
  • 通讯作者: 杨天晴(1991-),男,云南省人,讲师,硕士,主要研究方向为数据挖掘。E-mail:822134845@qq.com E-mail:822134845@qq.com
  • 作者简介:杨静宗(1991—),男,云南省人,副教授,博士,主要研究方向为复杂工业过程控制、检测与优化
  • 基金资助:
    云南省科技厅地方本科高校基础研究联合专项资助项目(2019FH001-121);云南省大学生创新创业训练计划资助项目(S202010686007);第十批保山市中青年学术和技术带头人培养项目资助(202109)

A Fault Feature Extraction Method Based on ITD-SVD and MOMEDA

YANG Jingzong, YANG Tianqing, WU Limei   

  1. School of Big Data, Baoshan University, Baoshan 678000, China
  • Received:2020-05-13 Published:2022-01-24

摘要: 为提高滚动轴承故障诊断的准确性,提出一种基于固有时间尺度分解(ITD)、奇异值分解(SVD)和多点最优最小熵反褶积(MOMEDA)相结合的故障特征提取方法。首先,采用ITD分解故障振动信号,并构建基于峭度和相关系数的组合权重指标筛选准则,从而完成分量信号的筛选与重构。其次,对其进行SVD滤波降噪。最后,利用MOMEDA提取降噪后信号中的周期性冲击成分,并通过Hilbert包络谱分析得到诊断结果。经过实验数据分析,结果表明所提出的方法不仅能滤除噪声干扰,增强故障特征信息,而且能准确提取出故障特征。

关键词: 固有时间尺度分解, 奇异值分解(SVD), 多点最优最小熵反褶积(MOMEDA), 故障特征提取

Abstract: In order to improve the accuracy of rolling bearing fault diagnosis, a fault feature extraction method based on the combination of intrinsic time scale decomposition (ITD), singular value decomposition (SVD) and multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is proposed. Firstly, ITD is used to decompose the fault vibration signal, and the component signal is filtered and reconstructed according to the combination of kurtosis and correlation coefficient weight index screening criteria. Then the SVD filter is used to reduce the noise. Finally, the periodic impact components in the noise reduced signal are extracted by MOMEDA, and the diagnosis results are obtained by Hilbert envelope analysis. Through the analysis of experimental data, the results show that the proposed method can not only filter out noise interference, enhancing fault feature information, but also extract fault features accurately.

Key words: intrinsic time scale decomposition, singular value decomposition (SVD), multipoint optimal minimum entropy deconvolution adjusted (MOMEDA), fault feature extraction

中图分类号: