工业工程 ›› 2024, Vol. 27 ›› Issue (2): 57-66.doi: 10.3969/j.issn.1007-7375.230258

• 人因工程 • 上一篇    下一篇

用户感性偏好导向的智能语音交互设计评价方法

王铁旦1,2, 胡艺朋1,2, 彭定洪1,2   

  1. 1. 昆明理工大学 管理与经济学院;
    2. 质量发展研究院,云南 昆明 650504
  • 收稿日期:2023-12-26 发布日期:2024-04-29
  • 通讯作者: 彭定洪(1982-),男,云南省人,教授,博士,主要研究方向为模糊评价与决策分析。Email:pengdinghong2006@163.com E-mail:pengdinghong2006@163.com
  • 作者简介:王铁旦(1971-),男,河南省人,高级工程师,博士,主要研究方向为感性工学、质量工程与管理
  • 基金资助:
    国家自然科学基金资助项目 (72261020, 71861018) ; 云南省基础研究计划资助项目 (202201AT070190) ; 云南省哲学社会科学规划项目 (YB2019067)

An Evaluation Method for Intelligent Voice Interaction Design Based on User Perceptual Preference

WANG Tiedan1,2, HU Yipeng1,2, PENG Dinghong1,2   

  1. 1. Faculty of Management and Economics;
    2. Quality Development Institute, Kunming University of Science and Technology, Kunming 650504, China
  • Received:2023-12-26 Published:2024-04-29

摘要: 用户感性偏好是智能语音交互设计的重要依据,为解决评价过程中存在的用户实际决策行为与其感性评价结果不一致的问题,提出了一种用户感性偏好导向的直觉模糊锚定评价方法。首先,采用直觉模糊集表征用户对智能语音交互设计的感性偏好信息,以充分描述用户偏好的模糊性与不确定性。其次,将最优最劣思想融入序数优先级方法以确定权重,在保证运算过程简便性的同时,克服了该方法在排序方面存在的缺陷。再次,从数理角度刻画了锚定效应在评价过程中的作用机制,并将锚定效应融入智能语音交互设计评价方法,就其对最终评价结果的影响进行量化分析。最后,以某智能车载系统语音交互设计为例,验证该方法有助于提高预测用户实际决策结果的准确性和可信度。

关键词: 智能语音交互, 感性工学, 直觉模糊集, 序数优先级方法, 锚定效应

Abstract: User perceptual preference is an important basis for intelligent voice interaction design. To solve the problem of inconsistency between users' actual decision-making behavior and their perceptual evaluation results in the evaluation process, an intuitionistic fuzzy anchoring evaluation method based on user perceptual preference is proposed. Firstly, to fully describe the ambiguity and uncertainty of user preference, the intuitionistic fuzzy set is used to represent the user's perceptual preference information for intelligent voice interaction design. Secondly, the best and worst idea is incorporated into the ordinal priority approach (OPA) to determine the weights, which ensures the simplicity of the operation process and overcomes the defects of traditional OPA in sorting. Thirdly, the mechanism of anchoring effect in the evaluation process is described from a mathematical perspective, and the anchoring effect is integrated into the evaluation method of intelligent voice interaction design to quantitatively analyze the impact of the anchoring effect on the final evaluation result. Finally, taking the voice interaction design of an intelligent vehicle system as an example, it is verified that the method can improve the accuracy and reliability of predicting the actual decision result of users.

Key words: intelligent voice interaction, kansei engineering, intuitionistic fuzzy set, ordinal priority approach, anchoring effect

中图分类号: