[1] MONTGOMERY Douglas C. Introduction to statistical quality control[M]. 5th Ed. US:John Wiley & Sons, Inc, 2005 [2] VASILOPOULOS A V, STAMBOULIS A P. Modification of control chart limits in the presence of correlation[J]. Journal of Quality Technology, 1978, 20(1):54-59 [3] YASHCHIN E. Performance of CUSUM control schemes for serially correlated observations[J]. Technometrics, 1993, 35(1):37-52 [4] SCHMID W, SCHONE A. Some properties of the EWMA control chart in the presence of autocorrelation[J]. 1997, 25(3):1277-1283 [5] RUNGER G. Assignable causes and autocorrelation:control charts for observations or residuals[J]. Journal of Quality Technology, 2002, 34(2):165-170 [6] ALWAN Layth C, ROBERTS Harry V. Time-series modeling for statistical process control[J]. Journal of Business & Economic Statistics, 1988, 6(1):87-95 [7] WARDELL D G, MOSKOWITZ H, PLANTE R D. Run-length distributions of special-cause control charts for correlated processes[J]. Technometrics, 1994, 36(1):3-17 [8] RUNGER G C, WILLEMAIN T R. Model-based and model-free control of autocorrelated processes[J]. Journal of Quality Technology, 1995, 27(4):283-292 [9] RUNGER George C, WILLEMAIN Thomas R, PRABHU Sharad. Average run lengths for cusum control charts applied to residuals[J]. Communication in Statistics- Theory and Methods, 1995, 24(1):273-282 [10] SHU L, APLEY D W, TSUNG F. Autocorrelated process monitoring using triggered cuscore charts[J]. Quality & Reliability Engineering, 2002, 18(5):411-421 [11] HUANG X, BISGAARD S, XU N. Model-based multivariate monitoring charts for autocorrelated processes[J]. Quality & Reliability Engineering International, 2014, 30(4):527-543 [12] HE Z, WANG Z, TSUNG F, et al. A control scheme for autocorrelated bivariate binomial data[J]. Computers & Industrial Engineering, 2016, 98:350-359 [13] LEONI R C, MACHADO M A G, COSTA A F B. The T2 chart with mixed samples to control bivariate autocorrelated processes[J]. International Journal of Production Research, 2016, 54(11):3294-3310 [14] ASADZADEH S, AGHAIE A, SHAHRIARI H, et al. Improving reliability in multistage processes with autocorrelated observations[J]. Quality Technology & Quantitative Management, 2016, 12(2):143-157 [15] ASGARI A, AMIRI A. A new link function in GLM-based control charts to improve monitoring of two-stage processes with Poisson response[J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9):1243-1256 [16] 万松, 李艳婷, 于福成. 多工序过程自相关数据的统计监测[J]. 上海交通大学学报, 2010, 44(9):1187-1191 WAN Song, LI Yanting, YU Fucheng. Statistical process monitoring of autocorrelated data from multistage processes[J]. Journal of Shanghai Jiaotong University, 2010, 44(9):1187-1191 [17] 张锐, 杜世昌, 奚立峰, 等. 面向自相关过程的改进ARMAST控制图与Grubbs调和规则的集成[J]. 计算机集成制造系统, 2015, 21(1):151-159 ZHANG Rui, DU Shichang, XI Lifeng, et al. Integration of modified ARMAST chart and Grubb's harmonic rule for auto-correlated processes[J]. Computer Integrated Manufacturing Systems, 2015, 21(1):151-159 [18] 张锐, 杜世昌, 奚立峰. AR(p)扰动下最小均方误差受控过程的联合监控[J]. 上海交通大学学报, 2014, 48(12):1739-1744 ZHANG Rui, DU Shichang, XI Lifeng. Joint monitoring of MMSE-controlled processes for AR(p) disturbances[J]. Journal of Shanghai Jiaotong University, 2014, 48(12):1739-11744 [19] MUKHERJEE A, CHAKRABORTI S. A distribution-free control chart for the joint monitoring of location and scale[J]. Quality & Reliability Engineering International, 2012, 28(3):335-352 [20] CHOWDHURY S, MUKHERJEE A, CHAKRABORTI S. A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions[J]. Quality & Reliability Engineering International, 2013, 30(2):191-204 [21] CHONG Z L, MUKHERJEE A, KHOO M B C. Distribution-free Shewhart-Lepage type premier control schemes for simultaneous monitoring of location and scale[J]. Computers & Industrial Engineering, 2017, 104:201-215 [22] ZHANG J, LI E, LI Z. A Cramér-von Mises test-based distribution-free control chart for joint monitoring of location and scale[J]. Computers & Industrial Engineering, 2017, 110:484-497 [23] ALONSO A M, PEÑA D, ROMO J. Forecasting time series with sieve Bootstrap[J]. Journal of Statistical Planning & Inference, 2002, 100(1):1-11 [24] CAPIZZI G, GUIDO M. Bootstrap-based design of residual control charts[J]. ⅡE Transactions, 2009, 41(4):275-286 [25] MANCENIDO M, BARRIOS E. An AR-sieve Bootstrap control chart for autocorrelated process data[J]. Quality & Reliability Engineering International, 2012, 28(4):387-395 [26] TAYLOR S J. Practical experiences with modelling and forecasting time series[J]. Technometrics, 1980, 31(1):84-84 [27] HURVICH C M, TSAI C. Regression and time series model selection in small samples[J]. Biometrika, 1989, 76(2):297-307 [28] MUNKHAMMAR J, RYDÉN J, WIDÉN J. Characterizing probability density distributions for household electricity load profiles from high-resolution electricity use data[J]. Applied Energy, 2014, 135:382-390 [29] CRAIGMILE P F. All of statistics:a concise course in statistical inference[J]. Journal of the Royal Statistical Society, 2005, 168(1):203-204 |