[1] 刘志明, 王戟. 人机物融合系统: 概念, 挑战与研究机遇[J]. 信息与电子工程前言 (英文) , 2020, 21(11): 1535-1554 LIU Zhiming, WANG Ji. Human-cyber-physical systems: concepts, challenges and research opportunities[J]. Frontiers of Information Technology and Electronic Engineering, 2020, 21(11): 1535-1554 [2] 张洁, 高亮, 秦威, 等. 大数据驱动的智能车间运行分析与决策方法体系[J]. 计算机集成制造系统, 2016, 22(5): 1220-1228 ZHANG Jie, GAO Liang, QIN Wei, et al. Big-data-driven operational analysis and decision-making methodology in intelligent workshop[J]. Computer Integrated Manufacturing Systems, 2016, 22(5): 1220-1228 [3] CHEN T. Embedding a back propagation network into fuzzy c-means for estimating job cycle time: wafer fabrication as an example[J]. Journal of Ambient Intelligence and Humanized Computing, 2016, 7(6): 789-800 [4] 汤珺雅, 李莉. 基于多层数据分析框架的半导体加工周期预测[J]. 计算机集成制造系统, 2019, 25(5): 1086-1092 TANG Junya, LI Li. Cycle time prediction method for semiconductor wafer fabrication facility based on multi-layer data analysis framework[J]. Computer Integrated Manufacturing Systems, 2019, 25(5): 1086-1092 [5] RUSCHEL E, LOURES E, SANTOS E, et al. Performance analysis and time prediction in manufacturing systems[J]. Computers & Industrial Engineering, 2020, 151(4): 1-15 [6] WANG Y C, TSAI H R, CHEN T. A selectively fuzzified back propagation network approach for precisely estimating the cycle time range in wafer fabrication[J]. Mathematics, 2021, 9(12): 1430-1450 [7] VIOLA G, LUKAS L, JOHANNES B, et al. Work in progress level prediction with long short-term memory recurrent neural network[J]. Procedia Manufacturing, 2021, 54: 136-141 [8] TIN T C, CHIEW K L, PHANG S C, et al. Incoming work-in-progress prediction in semiconductor fabrication foundry using long short-term memory[J]. Computational Intelligence and Neuroscience, 2019, 2019: 1-16 [9] WANG J, ZHANG J, WANG X. Bilateral LSTM: a two-dimensional long short-term memory model with multiply memory nits for short-term cycle time forecasting in re-entrant manufacturing systems[J]. IEEE Transactions on Industrial Informatics, 2018, 14(2): 748-758 [10] 刘道元, 郭宇, 黄少华, 等. 一种面向订单剩余完工时间预测的SOM-FWFCM特征选择算法[J]. 中国机械工程, 2021, 32(9): 1073-1079 LIU Daoyuan, GUO Yu, HUANG Shaohua, et al. A SOM-FWFCM based feature selection algorithm for order remaining completion time prediction[J]. China Mechanical Engineering, 2021, 32(9): 1073-1079 [11] PRASETIYOWATI M I, MAULIDEYI N U, SURENDRO K. Determining threshold value on information gain feature selection to increase speed and prediction accuracy of random forest[J]. Journal of Big Data, 2021, 8(1): 84-106 [12] GU X, GUO J, XIAO L, et al. Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy[J]. Applied Intelligence, 2021(3): 1-12 [13] 盛夏, 赵新明, 张朋, 等. 基于栈式自动编码器的火箭总装完工时间预测[J]. 计算机集成制造系统, 2019, 25(11): 2720-2730 SHENG Xia, ZHAO Xinming, ZHANG Peng, et al. Stacked auto-encoder based approach for rocket final assembly cycle time prediction[J]. Computer Integrated Manufacturing Systems, 2019, 25(11): 2720-2730 [14] GASMI I, AZIZI M W, SERIDI B H, et al. Enhanced context-aware recommendation using topic modeling and particle swarm optimization[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(6): 10703-10719 [15] SUN Q Q, LIU X F, BOURENNANE S, et al. Multiscale denoising autoencoder for improvement of target detection[J]. International Journal of Remote Sensing, 2021, 42(8): 3002-3016 [16] 霍超颖, 闫华, 冯雪健, 等. HRRP稀疏自编码器深层特征与散射中心特征的关联性研究[J]. 系统工程与电子技术, 2021, 43(11): 3040-3053 HUO Chaoying, YAN Hua, FENG Xuejian, et al. Correlation research between deep features and HRRP sparse auto-encoder and scattering center features[J]. Systems Engineering and Electronics, 2021, 43(11): 3040-3053
|