[1] 张根保, 李立章, 冉琰, 等. 多品种小批量生产模式下基于相似元的工序能力分析[J]. 工程设计学报, 2018, 25(1): 18-26 ZHANG Genbao, LI Lizhang, RAN Yan, et al. Process capability analysis based on similarity cell under the multiple-variety and small-batch production mode[J]. Chinese Journal of Engineering Design, 2018, 25(1): 18-26 [2] 刘虎沉, 王鹤鸣, 施华. 智能质量管理: 理论模型、关键技术与研究展望[J/OL]. 中国管理科学: 1-16[2023-10-23]. https://doi.org/10.16381/j.cnki.issn1003-207x.2023.0399. LIU Huchen, WANG Heming, SHI Hua. Intelligent quality management: theoretical framework, key technologies, and research prospect [J/OL]. Chinese Journal of Management Science: 1-16 [2023-10-23]. https://doi.org/10.16381/j.cnki.issn1003-207x.2023.0399. [3] 陈鑫, 陈富民. 面向多品种小批量生产的贝叶斯动态质量控制方法[J]. 西安交通大学学报, 2019, 53(6): 17-22 CHEN Xin, CHEN Fumin. Bayesian dynamic quality control method for multi-variety small-batch production[J]. Journal of Xi'an Jiaotong University, 2019, 53(6): 17-22 [4] MENG L, JI K, ZHENG L, et al. Pattern recognition of quality control chart of multi-variety and small-batch production mode based on MC-GA optimized BP[J]. Journal of Physics: Conference Series, 2021, 1965(1): 1-8 [5] 陈克强, 刘伟军, 姜兴宇, 等. 面向多品种小批量制造过程的关键工序识别与聚类分析方法[J]. 计算机集成制造系统, 2022, 28(3): 812-825 CHEN Keqiang, LIU Weijun, JIANG Xingyu, et al. Method of key process identification and cluster analysis in multi-variety and small-batch manufacturing processes[J]. Computer Integrated Manufacturing Systems, 2022, 28(3): 812-825 [6] 杨剑锋, 李永梅, 李秀, 等. 基于数据融合的多品种小批量产品质量预测方法[J]. 统计与决策, 2021, 37(9): 33-36 YANG Jianfeng, LI Yongmei, LI Xiu, et al. Multi-variety and small-batch product quality prediction method based on data fusion[J]. Statistics & Decision, 2021, 37(9): 33-36 [7] 高玉明, 张天瑞, 张赛. 基于GBO-LSSVM的多品种小批量产品质量预测[J]. 组合机床与自动化加工技术, 2022(6): 175-179 GAO Yuming, ZHANG Tianrui, ZHANG Sai. Multi-variety and small-batch product quality prediction method based on GBO-LSSVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(6): 175-179 [8] 王宁, 李盼盼, 赵哲耘, 等. 基于卷积神经网络的智能制造过程质量异常诊断[J]. 运筹与管理, 2022, 31(6): 220-225 WANG Ning, LI Panpan, ZHAO Zheyun, et al. Quality abnormal recognition model based on convolutional neural network[J]. Operations Research and Management Science, 2022, 31(6): 220-225 [9] 张炎亮, 秦惜梦, 崔庆安. 基于PCA&SVM的多品种小批量产品质量预测方法研究[J]. 科技管理研究, 2016, 36(14): 234-237 ZHANG Yanliang, QIN Ximeng, CUI Qing'an. Research on qualitative forecasting for diversified small-quantity production based on PCA-SVM[J]. Science and Technology Management Research, 2016, 36(14): 234-237 [10] ATHANASIADIS I, IOANNIDES D. A machine learning approach using random forest and LASSO to predict wine quality[J]. International Journal of Sustainable Agricultural Management and Informatics, 2021, 7(3): 232-251 [11] PASCUA K B, LAGURA H D, LUMACAD G S, et al. Combined synthetic minority oversampling technique and deep neural network for red wine quality prediction[C]//2023 International Conference in Advances in Power, Signal, and Information Technology (APSIT) , 2023. Bhubaneswar, India: IEEE, 2023: 609-614. [12] HU Z, ZHAO Q, WANG J. The prediction model of worsted yarn quality based on CNN-GRNN neural network[J]. Neural Computing & Applications, 2019, 31(9): 4551-4562 [13] 陈昱, 项薇, 龚川. 基于数据挖掘的注塑产品质量在线故障检测及预测[J]. 中国机械工程, 2023, 34(14): 1749-1755 CHEN Yu, XIANG Wei, GONG Chuan. Online diagnostic inspection and prediction of product quality in injection molding intelligent factories based on data mining[J]. China Mechanical Engineering, 2023, 34(14): 1749-1755 [14] 孙海蓉, 李号. 基于深度迁移学习的小样本光伏热斑识别方法[J]. 太阳能学报, 2022, 43(1): 406-411 SUN Hairong, LI Hao. Photovoltaic hot spot identification method for small sample based on deep transfer learning[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 406-411 [15] 彭飞, 贲驰, 马煜, 等. 用于短期风功率预测的历史数据深度迁移模型[J]. 重庆大学学报, 2022, 45(1): 95-102 PENG Fei, BEN Chi, MA Yu, et al. A short-term wind power prediction model based on deep transfer learning of historical data[J]. Journal of Chongqing University, 2022, 45(1): 95-102 [16] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210 [17] 邱宁佳, 王晓霞, 王鹏, 等. 结合迁移学习模型的卷积神经网络算法研究[J]. 计算机工程与应用, 2020, 56(5): 43-48 QIU Ningjia, WANG Xiaoxia, WANG Peng, et al. Research on convolutional neural network algorithm combined with transfer learning model[J]. Computer Engineering and Applications, 2020, 56(5): 43-48 [18] ZHANG K, ZHANG K, BAO R. Prediction of gas explosion pressures: a machine learning algorithm based on KPCA and an optimized LSSVM[J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105082 [19] GRETTON A, FUKUMIZU K, HARCHAOUI Z, et al. A fast, consistent kernel two-sample test[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems (NIPS'09) . Red Hook, New York, USA: Curran Associates Inc. , 2009: 673–681. [20] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA: IEEE, 2018: 7132-7141. [21] 王颖慧, 苏怀智. 基于PCA-GWO-SVM的大坝变形预测[J]. 人民黄河, 2020, 42(11): 130-134 WANG Yinghui, SU Huaizhi. Dam deformation prediction based on PCA-GWO-SVM model[J]. Yellow River, 2020, 42(11): 130-134
|