[1] 韩文民, 黄劲松, 吴俊, 等. 基于近红外光学脑成像实验的轻型装配作业中的中断效应研究[J]. 工业工程, 2019, 22(3): 57-63 HAN Wenmin, HUANG Jingsong, WU Jun, et al. A research on the interruption effect of light assembly operation based on near-infrared optical brain imaging experiment[J]. Industrial Engineering Journal, 2019, 22(3): 57-63 [2] RUBIO S, DIAZ E, MARTIN J, et al. Evaluation of subjective mental workload: a comparison of SWAT, NASA-TLX, and workload profile methods[J]. Applied Psychology, 2004, 53(1): 61-86 [3] 崔凯, 孙林岩, 冯泰文, 等. 脑力负荷度量方法的新进展评述[J]. 工业工程, 2008, 11(5): 1-5 CUI Kai, SUN Linyan, FENG Taiwen, et al. New developments in measurement methodologies in mental workload[J]. Industrial Engineering Journal, 2008, 11(5): 1-5 [4] PAAS F G, VAN MERRIENBOER J J, ADAM J J. Measurement of cognitive load in instructional research[J]. Perceptual and Motor Skills, 1994, 79: 419-430 [5] LUXIMON A, GOONETILLEKE R S. Simplified subjective workload assessment technique[J]. Ergonomics, 2001, 44(3): 229-243 [6] BARAJAS-BUSTILLOS M A, MALDONADO-MACIAS A A, SERRANO-ROSA M A, et al. Impact of experience on the sensitivity, acceptability, and intrusive of two subjective mental workload techniques: the NASA TLX and workload profile[J]. Work-A Journal of Prevention Assessment & Rehabilitation, 2023, 75(4): 1265-1275 [7] RUSNOCK C F, BORGHETTI B J. Workload profiles: a continuous measure of mental workload[J]. International Journal of Industrial Ergonomics, 2018, 63: 49-64 [8] CHARLES R L, NIXON J. Measuring mental workload using physiological measures: a systematic review[J]. Applied Ergonomics, 2019, 74: 221-232 [9] 傅嘉豪, 焦学军, 曹勇, 等. 基于EEG的多因素认知任务脑力负荷研究[J]. 航天医学与医学工程, 2020, 33(1): 35-44 FU Jiahao, JIAO Xuejun, CAO Yong, et al. EEG-based study on mental workload in multi-factor cognitive tasks[J]. Space Medicine & Medical Engineering, 2020, 33(1): 35-44 [10] 代忠祥, BEZERIANOS Anastasios, CHEN SHA, 等. 基于单试验脑电图的n-back 任务中的脑力负荷分类[J]. 仪器仪表学报, 2017, 38(6): 1335-1344 DAI Zhongxiang, BEZERIANOS Anastasios, CHEN SHA, et al. Mental workload Classification in n-back tasks based on single trial EEG[J]. Chinese Journal of Scientific Instrument, 2017, 38(6): 1335-1344 [11] BORGHINIA G, ASTOLFIAC L, VECCHIATOAB G, et al. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness[J]. Neuroscience & Biobehavioral Reviews, 2014, 44: 58-75. [12] 桑林琼, 王莉, 乔梁, 等. 基于fNIRs的大脑前额叶皮层在不同脑力负荷下的激活模式研究[J]. 陆军军医大学学报, 2022, 44(3): 210-215 SANG Linqiong, WANG Li, QIAO Liang, et al. Load-dependent activation of bilateral prefrontal cortex: an fNIRS study[J]. Journal of Army Medical University, 2022, 44(3): 210-215 [13] TJOLLENG A, JUNG K, HONG W, et al. Classification of a driver's cognitive workload levels using artificial neural network on ECG signals[J]. Applied Ergonomics, 2017, 59: 326-332 [14] VICENTE J, LAGUNA P, BARTRA A, et al. Detection of driver's drowsiness by means of HRV analysis[J]. Conference on Computing in Cardiology, 2011, 38: 89-92 [15] 郭孜政, 潘雨帆, 潘毅润, 等. 驾驶员脑力负荷的SVM 识别模型[J]. 哈尔滨工业大学学报, 2016, 48(3): 154-158 GUO Zizheng, PAN Yufan, PAN Yirun, et al. SVM recognition model of driver’s mental workload[J]. Journal of Harbin Institute of Technology, 2016, 48(3): 154-158 [16] 余琦玮, 冯定忠, 徐新胜, 等. 基于Lego模拟的脑力负荷测量方法[J]. 工业工程与管理, 2018, 23(5): 53-59 YU Qiwei, FENG Dingzhong, XU Xinsheng, et al. Measurement of mental workload in assembly based on Lego Simulation[J]. Industrial Engineering and Management, 2018, 23(5): 53-59
|