[1]Hotelling H. Multivariate quality control, illustrated by the air testing of sample bombsights[M]∥ New York:Eisenhart C, Hastay M W,Wallis W A. Techniques of Statistical Analysis, 1947:111-184.
[2]Montgomery D C. Introduction to statistical quality control [M]. New Jersey: John Wiley & Sons, 2007:494-512.
[3]Woodall W H, Montgomery D C. Research issues and ideas in statistical process control [J]. Journal of Quality Technology, 1999, 31(4):376-386.
[4]Hwang W, Runger G, Tuv E. Multivariate statistical process control with artificial contrasts [J]. IIE Transactions, 2007, 39(6): 659-669.
[5]Macgregor J F, Kourti T. Statistical process control of multivariate processes [J]. Control Engineering Practice,1995, 3(3): 403-441.
[6]Hawkins D M. Multivariate quality control based on regression-adjusted variables [J]. Technometrics, 1991, 33(1):61-75.
[7]Lowry C A, Woodall W H, Champ C W, et al. A multivariate EWMA control chart [J]. Technometrics, 1992, 34(1):46-53.
[8]Kramer H G, Schmin W. EWMA charts for multivariate time series [J]. Sequential Analysis, 1997, 16(2):131-154.
[9]Bersimis S, Psarakis S, Panaretos J. Multivariate statistical process control charts: an overview [J]. Quality & Reliability Engineering International, 2006, 23(5): 517-543.
[10] Kouri T, MacGregor J F. Multivariate SPC methods for process and product monitoring [J]. Journal of Quality Tecknology, 1996, 28(4): 409-428.
[11]Zhang Z, Zhu X, Jin J. SVC-based multivariate control charts for automatic anomaly detection in computer networks[EB/OL].(2007-06-19).http:∥ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4437933_tag=1.
[12]Tax D M J, Duin R P W. Support vector data description [J]. Machine Learning, 2004, 54(1):45-66.
[13]Sukchotrar T. Data mining-driven approaches for process monitoring and diagnosis [D].Arlington: University of Texas, 2008.
[14]Sun R, Tsung F. A kernel-distance-based multivariate control chart using support vector methods [J]. International Journal of Production Research, 2003, 41(13): 2975-2989.
[15]Kumar S, Choudhary A K, Kumar M, et al. Kernel distance-based robust support vector methods and its application in developing a robust K-chart[J]. International Journal of Production Research, 2006, 44(1):77-96.
[16]Sukchotrar T, Kim S B, Tsung F. One-class classification-based control charts for multivariate process monitoring [J]. IIE Transaction, 2009, 42(2): 107-120. |