[1] HOTELLING H. Multivariate quality control by air testing of sample bombsights//Eisenhart C, Hastay M W, Wallis W A. Techniques of statistical analysis[M]. New York:McGraw,1947. [2] WOODALL W H, NCube M M. Multivariate CUSUM quality-control procedures[J]. Technometrics, 1985, 27(3):285-292 [3] LOWRY C, WOODALL W, CHAMP C, et al. A multivariate exponentially weighted moving average control chart[J]. Technometrics, 1992, 34(1):8 [4] BAKIR S. Distribution-free quality control charts based on signed-rank-like statistics[J]. Communications in Statistics, 2006, 35(4):15 [5] GRAHAM M A, CHAKRABORTI S, HUMAN S W. A nonparametric EWMA sign chart for location based on individual measurements[J]. Quality Engineering, 2011, 23(3):227-241 [6] QIU P. Distribution-free multivariate process control based on log-linear modeling[J]. IIE Transactions, 2008, 40(7):664-677 [7] ZOU C, WANG Z, TSUNG F. A spatial rank-based multivariate EWMA control chart[J]. Naval Research Logistics (NRL), 2012, 59(2):91-110 [8] NING X, TSUNG F. A density-based statistical process control scheme for high-dimensional and mixed-type observations[J]. IIE Transactions, 2012, 44(4):301-311 [9] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF:identifying density-based local outliers[C/OL]. (2000-05-16). https://www.researchgate.net/publication/221214719_LOF_Identifying_Density-Based_Local_Outliers. [10] LIU R Y. Control charts for multivariate processes[J]. Publications of the American Statistical Association, 1995, 90(432):1380-1387 [11] DING D, TSUNG F, LI J. Rank-based process control for mixed-type data[J]. IIE Transactions, 2016:673-683 [12] SKLAR M. Fonctions de repartition à n dimensions et leurs marges[J]. Publication de 1'Institut de Statistique de 1'Universite de Paris, 1959, 8:229-231 [13] SONG P X, LI M, YUAN Y. Joint regression analysis of correlated data using Gaussian Copulas[J]. Biometrics, 2009, 65(1):60-68 [14] FATAHI Amir Afshin, NOOROSSANA Rassoul, DOKOUHAKI Pershang, et al. Copula-based bivariate ZIP control chart for monitoring rare events[J]. Communications in Statistics, 2012, 41(15):18 [15] SUKPARUNGSEE S, KUVATTANA S, BUSABABODHIN P, et al. Bivariate Copulas on the Hotelling's T2 control chart[C/OL]. (2017-12-18). https://www.tandfonline.com/doi/abs/10.1080/03610918.2016.1228958. [16] TRIVEDI P K, ZIMMER D M, TRIVEDI P K, et al. Copula modeling:an introduction for practitioners//Foundations and Trends® in Econometrics[M].Boston:Now Publishers, 2005. [17] VERDIER G. Application of Copulas to multivariate control charts[J]. Journal of Statistical Planning & Inference, 2013, 143(12):2151-2159 [18] LIU R Y, SINGH K, TENG J H. DDMA-charts:nonparametric multivariate moving average control charts based on data depth[J]. Allgemeines Statistisches Archiv, 2004, 88(2):235-258 [19] KOSMIDIS I, KARLIS D. Model-based clustering using Copulas with applications[J]. Statistics & Computing, 2016, 26(5):1079-1099 [20] MIN A, CZADO C. Bayesian inference for multivariate Copulas using Pair-Copula constructions[J]. Journal of Financial Econometrics, 2010, 8(4):511-546 [21] BRECHMANN E C, SCHEPSMEIER U. Modeling dependence with C-and D-vine Copulas:the R package CDVine[J]. Journal of Statistical Software, 2013, 52(3):1-27 [22] SCHMIDL D, CZADO C, HUG S, et al. A Vine-Copula based adaptive MCMC sampler for efficient inference for dynamic systems[J]. Bayesian Analysis, 2013, 8(1):1-22 [23] BEDFORD T, COOKE R M. Vines:a new graphical model for dependent random variables[J]. Annals of Statistics, 2002, 30(4):1031-1068 [24] AAS K, CZADO C, FRIGESSI A, et al. Pair-Copula constructions of multiple dependence[J]. Insurance:Mathematics and Economics, 2009, 44(2):182-198 [25] ZILKO A A, KUROWICKA D. Copula in a multivariate mixed discrete-continuous model[J]. Computational Statistics & Data Analysis, 2016, 103:28-55 [26] KIM D, KIM J M, LIAO S M, et al. Mixture of D-Vine Copulas for modeling dependence[J]. Computational Statistics & Data Analysis, 2013, 64(4):1-19 [27] 郑文静, 李绍军, 蒋达. D-vine copulas混合模型及其在故障检测中的应用[J]. 化工学报, 2017, 68(7):2851-2858 ZHENG Wenjing, LI Shaojun, JIANG Da. Mixture of D-vine copulas model and its application in fault detection[J]. CIESC Journal, 2017, 68(7):2851-2858 [28] DISSMANN J, BRECHMANN E C, CZADO C, et al. Selecting and estimating regular vine Copula and application to financial returns[J]. Computational Statistics & Data Analysis, 2013, 59:52-69 [29] FINK H, KLIMOVA Y, CZADO C, et al. Regime switching vine Copula models for global equity and volatility indices[J]. Econometrics, 2017, 5(1):3 [30] JOE H. Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters[J]. Lecture Notes-Monograph Series, 1996:120-141 [31] AKAIKE H. Information theory and an extension of the maximum likelihood principle//Springer series in statistics book series[M]. New York:Springer, 1973. [32] Bozdogan H. Model selection and Akaike's information criterion (AIC):the general theory and its analytical extensions[J]. Psychometrika, 1987, 52(3):345-370 [33] Schwarz G. Estimating the dimension of a model[J]. The annals of statistics, 1978, 6(2):461-464 [34] LIEBSCHER E. Semiparametric density estimators using Copulas[J]. Communication in Statistics-Theory and Methods, 2005, 34(1):59-71 [35] EPANECHNIKOV V A. Non-parametric estimation of a multivariate probability density[J]. Theory of Probability & Its Applications, 1969, 14(1):153-158 [36] SILVERMAN B W. Density estimation for statistics and data analysis[M]. UK:Routledge, 2018. [37] DUA, D, GRAFF, C. UCI machine learning repository[DB/OL].[2018-11-01]. http://archive.ics.uci.edu/ml. [38] FAWCETT T. An introduction to ROC analysis[J]. Pattern recognition letters, 2006, 27(8):861-874 |