[1] 张洁, 秦威. 智能制造调度为先——《制造系统智能调度方法与云服务》导读[J]. 中国机械工程, 2019, 30(8): 1002-1007 ZHANG Jie, QIN Wei. Intelligent manufacturing scheduling first—a guide of manufacturing system intelligent scheduling method and cloud service[J]. China Mechanical Engineering, 2019, 30(8): 1002-1007 [2] 吕佑龙, 张洁. 基于大数据的智慧工厂技术框架[J]. 计算机集成制造系统, 2016, 22(11): 2691-2697 LYU Youlong, ZHANG Jie. Big-data-based technical framework of smart factory[J]. Computer Integrated Manufacturing Systems, 2016, 22(11): 2691-2697 [3] WANG J, ZHANG J. Big data analytics for forecasting cycle time in semiconductor wafer fabrication system[J]. International Journal of Production Research, 2016, 54(23): 7231-7244 [4] THOBEN K D, WIESNER S A, WUEST T. “Industrie 4.0” and smart manufacturing-a review of research issues and application examples[J]. International Journal of Automation Technology, 2017, 11(1): 4-19 [5] 赵博选, 高建民, 付颖斌, 等. 求解柔性作业车间调度问题的多策略融合Pareto人工蜂群算法[J]. 系统工程理论与实践, 2019, 39(5): 1225-1235 ZHAO Boxuan, GAO Jianmin, FU Yingbin, et al. A multi-strategy integration artificial bee colony algorithm for flexible job shop scheduling problems[J]. Systems Engineering—Theory & Practice, 2019, 39(5): 1225-1235 [6] 姚锡凡, 张剑铭, 陶韬, 等. 从精敏制造到工业4.0长尾生产的制造业转型升级[J]. 计算机集成制造系统, 2018, 24(10): 2377-2387 YAO Xifan, ZHANG Jianming, TAO Tao, et al. From leagile manufacturing to long-tail production in Industry 4.0 for upgrading manufacturing[J]. Computer Integrated Manufacturing Systems, 2018, 24(10): 2377-2387 [7] 高青松, 李婷. “中国制造2025”研究进展及评述[J]. 工业技术经济, 2018, 37(10): 59-66 GAO Qingsong, LI Ting. Progress and review in “China Manufacturing 2025”[J]. Journal of Industrial Technological Economics, 2018, 37(10): 59-66 [8] 冯伟夏, 孟安波, 何双伯. 基于自组织网络的智能电网配电方案设计[J]. 现代电子技术, 2019, 42(9): 158-162 FENG Weixia, MENG Anbo, HE Shuangbo. Design of smart grid power distribution scheme based on self-organizing network[J]. Modern Electronics Technique, 2019, 42(9): 158-162 [9] 王雅萍, 张正军, 颜子寒, 等. 基于改进的迁移率模型的生物地理学优化算法[J]. 计算机应用, 2019, 39(9): 2511-2516 WANG Yaping, ZHANG Zhengjun, YAN Zihan, et al. Biogeography-based optimization algorithms based on improved migration rate models[J]. Journal of Computer Applications, 2019, 39(9): 2511-2516 [10] 车林仙, 何兵, 卢建波. 混合离散人工蜂群算法在齿轮传动优化中的应用[J]. 机械设计, 2017, 34(12): 92-99 CHE Linxian, HE Bing, LU Jianbo. Application of hybrid discrete artificial bee colony algorithm to gear transmission optimization[J]. Journal of Machine Design, 2017, 34(12): 92-99 [11] 郝晓弘, 韩于芳, 晏燕. 基于文化基因算法的多目标云任务调度研究[J]. 微电子学与计算机, 2018, 35(1): 61-65, 71 HAO Xiaohong, HAN Yufang, YAN Yan. Research on multi-objective cloud task scheduling based on memetic algorithm[J]. Microelectronics & Computer, 2018, 35(1): 61-65, 71 [12] 裴小兵, 于秀燕, 王尚磊. 混合帝国竞争算法求解旅行商问题[J]. 浙江大学学报(工学版), 2019, 53(10): 2003-2012 PEI Xiaobing, YU Xiuyan, WANG Shanglei. Solution of traveling salesman problem by hybrid imperialist competitive algorithm[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(10): 2003-2012 [13] 曹愈远, 张博文, 李艳军. AP聚类改进免疫算法用于航空发动机故障诊断[J]. 航空动力学报, 2019, 34(8): 1795-1804 CAO Yuyuan, ZHANG Bowen, LI Yanjun. AP clustering improved immune algorithm for aeroengine fault diagnosis[J]. Journal of Aerospace Power, 2019, 34(8): 1795-1804 [14] 刘洪铭, 曾鸿雁, 周伟, 等. 基于改进粒子群算法作业车间调度问题的优化[J]. 山东大学学报(工学版), 2019, 49(1): 75-82 LIU Hongming, ZENG Hongyan, ZHOU Wei, et al. Optimization of job shop scheduling based on improved particle swarm optimization algorithm[J]. Journal of Shandong University (Engineering Science), 2019, 49(1): 75-82 [15] 赵建峰, 袁细国, 梁伯栋, 等. 基于车联网及云计算的电动物流车智能调度算法[J]. 公路交通科技, 2019, 36(6): 112-124 ZHAO Jianfeng, YUAN Xiguo, LIANG Bodong, et al. An electric logistics vehicle intelligent scheduling algorithm based on internet of vehicles and cloud computing[J]. Journal of Highway and Transportation Research and Development, 2019, 36(6): 112-124 [16] 喻德旷, 杨谊, 钱俊. 云计算资源的DRDPSO混合式群体智能调度策略[J/OL]. 计算机应用, (2018-07-25)[2019-12-12]. http://kns.cnki.net/kcms/detail/51.1307.TP.20180725.1504.076.html YU Dekuang, YANG Yi, QIAN Jun. DRDPSO hybrid swarm intelligence scheduling strategy for cloud computing resources [J/OL]. Journal of Computer Applications, (2018-07-25)[2019-12-20].: http://kns.cnki.net/kcms/detail/51.1307.TP.20180725.1504.076.html [17] 王兴柱, 颜君彪, 曾庆怀. 多级优化的云计算任务智能调度算法[J]. 控制工程, 2017, 24(5): 1008-1012 WANG Xingzhu, YAN Junbiao, ZENG Qinghuai. Intelligent task scheduling algorithm of cloud computing using multi-level optimization[J]. Control Engineering of China, 2017, 24(5): 1008-1012 [18] 李佳. 基于云计算的电网智能调度平台的构建[J]. 电源技术, 2015, 39(12): 2759-2760 LI Jia. Construction platform of intelligent power grid scheduling based on cloud computing[J]. Chinese Journal of Power Sources, 2015, 39(12): 2759-2760 [19] 饶威, 丁坚勇, 路庆凯. 智能电网云计算平台构建[J]. 华东电力, 2011, 39(9): 1493-1496 RAO Wei, DING Jianyong, LU Qingkai. Cloud computing platform construction for smart grid[J]. East China Electric Power, 2011, 39(9): 1493-1496 [20] 陈海燕. 基于多群智能算法的云计算任务调度策略[J]. 计算机科学, 2014, 41(S1): 83-86 CHEN Haiyan. Task scheduling in cloud computing based on swarm intelligence algorithm[J]. Computer Science, 2014, 41(S1): 83-86 [21] 刘志峰, 陈伟, 杨聪彬, 等. 基于数字孪生的零件智能制造车间调度云平台[J]. 计算机集成制造系统, 2019, 25(6): 1444-1453 LIU Zhifeng, CHEN Wei, YANG Congbin, et al. Intelligent manufacturing workshop dispatching cloud platform based on digital twins[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1444-1453 [22] HANSEN I A. 从数据挖掘到智能调度决策支持: 存在问题与实施路径[J]. 北京交通大学学报, 2019, 43(1): 18-30 [23] 吴秀丽, 孙琳. 智能制造系统基于数据驱动的车间实时调度研究[J/OL]. 控制与决策, (2018-11-13)[2019-09-15]. http://kns.cnki.net/kcms/detail/21.1124.TP.20181113.0906.005.html WU Xiuli, SUN Lin. Research on data-based real-time scheduling in smart manufacturing[J/OL]. Control and Decision, (2018-11-13) [2019-09-15]. http://kns.cnki.net/kcms/detail/21.1124.TP.20181113.0906.005.html [24] 王雷, 邹新. 基于改进免疫克隆选择算法的柔性作业车间调度[J]. 南京理工大学学报, 2018, 42(3): 345-351 WANG Lei, ZOU Xin. Flexible job-shop scheduling based on improved immune clone selection algorithm[J]. Journal of Nanjing University of Science and Technology, 2018, 42(3): 345-351 [25] 高兆丽, 胥明凯, 丁素英, 等. 基于改进人工蜂群算法的配电网多点故障应急抢修优化调度[J]. 电力系统保护与控制, 2019, 47(13): 107-114 GAO Zhaoli, XU Mingkai, DING Suying, et al. Optimization scheduling of multi-fault rush repair for distribution networks based on modified artificial bee colony algorithm[J]. Power System Protection and Control, 2019, 47(13): 107-114 [26] YANG H, KUMARA S, BUKKAPATNAM S T S, et al. The internet of things for smart manufacturing: a review[J]. IISE Transactions, 2019, 51(11): 1190-1216 [27] LI Q, TANG Q, CHAN I, et al. Smart manufacturing standardization: architectures, reference models and standards framework[J]. Computers in Industry, 2018, 101: 91-106 [28] 贺宁馨. 中美经贸摩擦背景下我国知识产权保护战略研究——基于工业机器人和智能汽车产业的专利申请数据[J]. 中国科学院院刊, 2019, 34(8): 866-873 HE Ningxin. Research on China's intellectual property protection strategy under background of Sino-US trade friction——intellectual property protection based on typical industry of “Made in China 2025”[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(8): 866-873 [29] 洪林, 夏宏奎, 汪福俊, 等. 产学研协同创新的政策体系与保障机制——基于“中国制造2025”的思考[J]. 中国高校科技, 2019(4): 74-76 [30] RAMLY E, BRENNAN P F. Guiding the design of evaluations of innovations in health informatics: a framework and a case study of the smart Sharp evaluation[J]. Annual Symposium Proceedings, 2012(4): 1375-1384 [31] 张洁, 汪俊亮, 吕佑龙, 等. 大数据驱动的智能制造[J]. 中国机械工程, 2019, 30(2): 127-133, 158 ZHANG Jie, WANG Junliang, LYU Youlong, et al. Big data driven intelligent manufacturing[J]. China Mechanical Engineering, 2019, 30(2): 127-133, 158 [32] 任杉, 张映锋, 黄彬彬. 生命周期大数据驱动的复杂产品智能制造服务新模式研究[J]. 机械工程学报, 2018, 54(22): 194-203 REN Shan, ZHANG Yingfeng, HUANG Binbin. New pattern of lifecycle big-data-driven smart manufacturing service for complex product[J]. Journal of Mechanical Engineering, 2018, 54(22): 194-203 [33] 周佳军, 姚锡凡, 刘敏, 等. 几种新兴智能制造模式研究评述[J]. 计算机集成制造系统, 2017, 23(3): 624-639 ZHOU Jiajun, YAO Xifan, LIU Min, et al. State-of-art review on new emerging intelligent manufacturing paradigms[J]. Computer Integrated Manufacturing Systems, 2017, 23(3): 624-639 [34] 姚锡凡, 于淼, 陈勇, 等. 制造物联的内涵、体系结构和关键技术[J]. 计算机集成制造系统, 2014, 20(1): 1-10 YAO Xifan, YU Miao, CHEN Yong, et al. Connotation, architecture and key technologies of internet of manufacturing things[J]. Computer Integrated Manufacturing Systems, 2014, 20(1): 1-10 [35] 肖胜. 基于云计算的智能电网调度系统设计[J]. 电源技术, 2018, 42(2): 288-290 XIAO Sheng. Design of smart grid dispatching system based on cloud computing[J]. Chinese Journal of Power Sources, 2018, 42(2): 288-290 [36] 王伟, 杨伟光, 高立忠, 等. 基于智能电网调度支持的居民用电侧自动需求响应系统[J]. 现代电子技术, 2017, 40(10): 172-174 WANG Wei, YANG Weiguang, GAO Lizhong, et al. Research on automatic demand response system supported by smart power grid dispatching for residential electricity consumption[J]. Modern Electronics Technique, 2017, 40(10): 172-174 [37] 于宏文, 郑春伟, 汪洋, 等. 智能电网调度控制系统中历史数据服务优化方案[J]. 电力系统自动化, 2016, 40(19): 113-118 YU Hongwen, ZHENG Chunwei, WANG Yang, et al. Historical data service optimization scheme for smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2016, 40(19): 113-118 [38] 单茂华, 姚建国, 杨胜春, 等. 新一代智能电网调度技术支持系统架构研究[J]. 南方电网技术, 2016, 10(6): 1-7 SHAN Maohua, YAO Jianguo, YANG Shengchun, et al. Study on architecture of new generation of dispatching technical supporting system for smart grid[J]. Southern Power System Technology, 2016, 10(6): 1-7 [39] 辛耀中, 石俊杰, 周京阳, 等. 智能电网调度控制系统现状与技术展望[J]. 电力系统自动化, 2015, 39(1): 2-8 XIN Yaozhong, SHI Junjie, ZHOU Jingyang, et al. Technology development trends of smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2015, 39(1): 2-8 [40] 谢榕, 潘维, 柴崎亮介. 基于人工鱼群算法的出租车智能调度[J]. 系统工程理论与实践, 2017, 37(11): 2938-2947 XIE Rong, PAN Wei, SHIBASAKI R. Research on automatic demand response system supported by smart power grid dispatching for residential electricity consumption[J]. Systems Engineering—Theory & Practice, 2017, 37(11): 2938-2947 [41] 崔南方, 赵雁, 田文迪. 基于智能算法的双目标鲁棒性项目调度[J]. 系统管理学报, 2015, 24(3): 379-388 CUI Nanfang, ZHAO Yan, TIAN Wendi. Bi-objective robust project scheduling based on intelligent algorithms[J]. Journal of Systems & Management, 2015, 24(3): 379-388 [42] 杨海燕, 尤政, 王琳. 基于传感器多模式调度的智能目标跟踪算法[J]. 控制理论与应用, 2012, 29(9): 1186-1192 YANG Haiyan, YOU Zheng, WANG Lin. Smart target tracking algorithm based on multi-mode sensor scheduling[J]. Control Theory & Applications, 2012, 29(9): 1186-1192 [43] 潘逢山, 叶春明. 生产调度干扰管理模型构建及智能算法研究[J]. 工业工程与管理, 2012, 17(3): 85-89 PAN Fengshan, YE Chunming. Production scheduling model for disruption management and algorithm[J]. Industrial Engineering and Management, 2012, 17(3): 85-89 [44] CONG Y, TIAN D, FENG Y, et al. Speedup 3-D texture-less object recognition against self-occlusion for intelligent manufacturing[J]. IEEE Transactions on Cybernetics, 2018, 49(11): 3887-3897 [45] HUANG C Y. Distributed manufacturing execution systems: a workflow perspective[J]. Journal of Intelligent Manufacturing, 2002, 13(6): 485-497 [46] DIEZ-OLIVAN A, DEL SER J, Galar D, et al. Data fusion and machine learning for industrial prognosis: trends and perspectives towards Industry 4.0[J]. Information Fusion, 2019, 50: 92-111 [47] MATSATSINIS N F, SISKOS Y. MARKEX: an intelligent decision support system for product development decisions[J]. European Journal of Operational Research, 1999, 113(2): 336-354 [48] DAI M, TANG D, GIRET A, et al. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints[J]. Robotics and Computer-Integrated Manufacturing, 2019, 59: 143-157 [49] 龚宇, 熊光楞. 机器学习在智能车间调度系统中的应用[J]. 控制与决策, 1997, 12(3): 222-227, 233 GONG Yu, XIONG Guangleng. Application of machine learning in intelligent workshop scheduling system[J]. Control and Decision, 1997, 12(3): 222-227, 233 [50] 于倩, 蔚承建, 王开, 等. 基于机器学习的MapReduce资源调度算法[J]. 计算机应用研究, 2016, 33(1): 111-114 YU Qian, WEI Chengjian, WANG Kai, et al. Resource scheduling algorithm for MapReduce based on machine learning[J]. Application Research of Computers, 2016, 33(1): 111-114 [51] 唐秋华, 成丽新, 张利平. 扰动累积下基于机器学习的重调度方式选择[J]. 中国机械工程, 2019, 30(4): 472-479 TANG Qiuhua, CHENG Lixin, ZHANG Liping. Rescheduling mode selection under recessive disturbance accumulation via machine learnin[J]. China Mechanical Engineering, 2019, 30(4): 472-479 [52] 李岩, 吴智铭. 基于GA和机器学习的启发式规则调度方法[J]. 控制与决策, 1999, 14(S1): 561-564 LI Yan, WU Zhiming. GA and machine-learning based heuristic scheduling method[J]. Control and Decision, 1999, 14(S1): 561-564 [53] 邓建玲, 王飞跃, 陈耀武, 等. 从工业4.0 到能源5.0: 智能能源系统的概念、内涵及体系框架[J]. 自动化学报, 2015, 41(12): 2003-2016 DENG Jianling, WANG Feiyue, CHEN Yaowu, et al. From industries 4.0 to energy 5.0: concept and framework of intelligent energy systems[J]. Acta Automatica Sinica, 2015, 41(12): 2003-2016 [54] MOON J Y, PARK J. Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage[J]. International Journal of Production Research, 2014, 52(13): 3922-3939. [55] 陆青, 郁浩, 冷亚军, 等. 家庭智能用电任务调度优化模型及其算法研究[J]. 中国电机工程学报, 2018, 38(13): 3826-3836, 4023 LU Qing, YU Hao, LENG Yajun, et al. Research on model and algorithm of smart electricity consumption task scheduling optimization in household[J]. Proceedings of the CSEE, 2018, 38(13): 3826-3836, 4023 [56] 石军, 柳存根, 杨志. 基于数据挖掘的船舶平面分段智能调度模型设计[J]. 船海工程, 2018, 47(5): 60-63 SHI Jun, LIU Cungen, YANG Zhi. Intelligent panel block scheduling model based on data mining[J]. Ship & Ocean Engineering, 2018, 47(5): 60-63 [57] 黄超, 姚森敬, 朱正国, 等. 电网自动智能调度模型的改进设计[J]. 中国电力, 2016, 49(12): 37-41 HUANG Chao, YAO Senjing, ZHU Zhengguo, et al. Power grid automatic intelligent dispatching model improvement based on situational awareness[J]. Electric Power, 2016, 49(12): 37-41 [58] 程乐峰, 余涛, 张孝顺, 等. 信息-物理-社会融合的智慧能源调度机器人及其知识自动化: 框架、技术与挑战[J]. 中国电机工程学报, 2018, 38(1): 25-40, 340 CHENG Lefeng, YU Tao, ZHANG Xiaoshun, et al. Cyber-physical-social systems based smart energy robotic dispatcher and its knowledge automation: framework, techniques and challenges[J]. Proceedings of the CSEE, 2018, 38(1): 25-40, 340 [59] 符晓. 云计算中基于共享机制和群体智能优化算法的任务调度方案[J]. 计算机科学, 2018, 45(S1): 290-294 FU Xiao. Task scheduling scheme based on sharing mechanism and swarm intelligence optimization algorithm in cloud computing[J]. Computer Science, 2018, 45(S1): 290-294 [60] DELIKTAS D, TORKUL O, USTUN O. A flexible job shop cell scheduling with sequence-dependent family setup times and intercellular transportation times by using conic scalarization method[J]. International Transactions in Operational Research, 2019, 26(6): 2410-2431 [61] LI J, PAN Q, XIE S, et al. A hybrid pareto-based tabu search for multi-objective flexible job shop scheduling problem with E/T penalty[M]//TAN Y, SHI Y, TAN K C. Advances in swarm intelligence. ICSI 2010. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2010. [62] ZARROUK R, BENNOUR I E, JEMAI A. A two-level particle swarm optimization algorithm for the flexible job shop scheduling problem[J]. Swarm Intelligence, 2019, 13: 145-168 [63] 许洪强, 姚建国, 於益军, 等. 支撑一体化大电网的调度控制系统架构及关键技术[J]. 电力系统自动化, 2018, 42(6): 1-8 XU Hongqiang, YAO Jianguo, YU Yijun, et al. Architecture and key technologies of dispatch and control system supporting integrated bulk power grids[J]. Automation of Electric Power Systems, 2018, 42(6): 1-8 [64] 李廉水, 石喜爱, 刘军. 中国制造业40年: 智能化进程与展望[J]. 中国软科学, 2019(1): 1-9, 30 LI Lianshui, SHI Xi’ai, LIU Jun. 40 years of manufacturing in China: intelligentization process and outlook[J]. China Soft Science, 2019(1): 1-9, 30
|