[1] U.S. Energy information administration. International Energy Outlook 2016[R/OL]. (2016-05)[2019-12-12]. http://www.eia.gov. [2] MOUZON G, YILDIRIM M B, TWOMEY J. Operational methods for minimization of energy consumption of manufacturing equipment[J]. International Journal of Production Research, 2007, 45(18-19): 4247-4271 [3] 刘彩洁, 徐志涛, 张钦, 等.分时电价下基于NAGA-Ⅱ的柔性作业车间绿色调度[J/OL].中国机械工程, (2019-5-23)[2019-12-12]. http://kns.cnki.net/kcms/detail/42.1294.th.20190520.1536.004.html. LIU Caijie, XU Zhitao, ZHANG Qin, et al. Green scheduling of flexible job shop based on NAGA-Ⅱunder TOU power price[J/OL]. China Mechanical Engineer, (2019-5-23)[2019-12-12] http://kns.cnki.net/kcms/detail/42.1294.th.20190520.1536.004.html. [4] 陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2): 55-61 CHEN Fubin, LI Zhongxue, YANG Xijuan. Multi-objective flexible job shop scheduling based on improved NSGA2 algorithm[J]. Industrial Engineering Journal, 2018, 21(2): 55-61 [5] DAI M, TANG D B, GIRET A, et al. Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(5): 418-429 [6] LU C, LI X Y, GAO L, et al. An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times[J]. Computers & Industrial Engineering, 2017, 104: 156-174 [7] LIU Y, DONG H B, LOHSE N, et al. A multi-objective genetic algorithm for optimisation of energy consumption and shop floor production performance[J]. International Journal of Production Economics, 2016, 179: 259-272 [8] LU C, GAO L, LI X Y, et al. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm[J]. Journal of Cleaner Production, 2017, 144: 228-238 [9] AHMADIZAR F, SHAHMALEKI P. Group-shop scheduling with sequence-dependent set-up and transportation times[J]. Applied Mathematical Modelling, 2014, 38(21-22): 5080-5091 [10] 刘二辉, 姚锡凡, 陶韬, 等. 基于改进花授粉算法的共融AGV作业车间调度[J]. 计算机集成制造系统, 2019, 25(9): 2219-2236 LIU Erhui, YAO Xifan, TAO Tao, et al. Improved flower pollinaton algorithm for job shop scheduling problems integrated with AGVs[J]. Computer Integrated Manufacturing Systems, 2019, 25(9): 2219-2236 [11] LACOMME P, LARABI M, TCHERNEV N. Job-shop based framework for simultaneous scheduling of machines and automated guided vehicles[J]. International Journal of Production Economics, 2013, 143(1): 24-34 [12] 施金良, 刘飞, 许弟建, 等. 数控机床空载运行时节能决策模型及实用方法[J]. 中国机械工程, 2009, 20(11): 1344-1346 SHI Jinliang, LIU Fei, XU Dijian, et al. Decision model and practical method of energy-saving in NC machine tool[J]. China Mechanical Engineering, 2009, 20(11): 1344-1346 [13] 曹华军, 刘飞, 何彦. 机械加工系统节能降噪型综合任务分配模型及其应用[J]. 机械工程学报, 2006, 42(5): 97-102 CAO Huajun, LIU Fei, HE Yan. Integrated task-assigning model of energy saving and noise reduction in the machining systems and its application[J]. Chinese Journal of Mechanical Engineering, 2006, 42(5): 97-102 [14] 王圣尧, 王凌, 许烨, 等. 求解混合流水车间调度问题的分布估计算法[J]. 自动化学报, 2012, 38(3): 437-443 WANG Shengyao, WANG Ling, XU Ye, et al. An estimation of distribution algorithm for solving hybrid flow-shop scheduling problem[J]. Acta Automatica Sinica, 2012, 38(3): 437-443 [15] 黄海松, 刘凯, 初光勇. 改进模拟退火算法在柔性调度中的应用[J]. 组合机床与自动化加工技术, 2018(2): 148-151, 156 HUANG Haisong, LIU Kai, CHU Guangyong. Improved simulated annealing algorithm for low-carbon flexible job shop scheduling[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(2): 148-151, 156 [16] 肖世昌, 孙树栋, 杨宏安. 混合分布估计算法求解随机Job shop提前/拖期调度问题[J]. 控制与决策, 2015, 30(10): 1854-1860 XIAO Shichang, SUN Shudong, YANG Hong’an. Hybrid estimation of distribution algorithm for stochastic job shop scheduling with earliness/tardiness penalty[J]. Control and Decision, 2015, 30(10): 1854-1860 [17] TAILLARD E. Benchmarks for basic scheduling problems[J]. European Journal of Operational Research, 1993, 64(2): 278-285 [18] HAO X C, LIN L, GEN M, et al. Effective estimation of distribution algorithm for stochastic job shop scheduling problem[J]. Procedia Computer Science, 2013, 20: 102-107 [19] 王凌. 车间调度及其遗传算法[M]. 北京: 清华大学出版社, 2003. [20] ABELE E, SIELAFF T, SCHIFFLER A, et al. Analyzing energy consumption of machine tool spindle units and identification of potential for improvements of efficiency[M]. Berlin Heidelberg: Springer, 2011.
|