[1] KIM S, CHOI J, KIM N. Challenges and opportunities of system-level prognostics[J]. Sensors, 2021, 21(22): 7655 [2] 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55(8): 1-13 PEl Hong, HU Changhua, Sl Xiaosheng, et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55(8): 1-13 [3] FERREIRA C, GONCALVES G. Remaining useful life prediction and challenges: A literature review on the use of machine learning methods[J]. Journal of Manufacturing Systems, 2022, 63: 550-562 [4] AHMADZADEH F, LUNDBERG J. Remaining useful life estimation: review[J]. International Journal of System Assurance Engineering & Management, 2014, 5(4): 461-474 [5] 刘惠, 刘振宇, 郏维强, 等. 深度学习在装备剩余使用寿命预测技术中的研究现状与挑战[J]. 计算机集成制造系统, 2021, 27(1): 34-52 LIU Hui, LIU Zhenyu, JIA Weiqiang, et al. Current research and challenges of deep learning for equipment remaining useful life prediction[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 34-52 [6] CHEN C, SHI J, LU N, et al. Data-driven predictive maintenance strategy considering the uncertainty in remaining useful life prediction[J]. Neurocomputing, 2022, 494: 79-88 [7] 李志刚, 刘伯颖, 李玲玲, 等. 基于小波包变换及RBF神经网络的继电器寿命预测[J]. 电工技术学报, 2015, 30(14): 233-240 LI Zhigang, LIU Boying, LI Lingling, et al. Life prediction of relay based on wavelet packet transform and RBF neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 233-240 [8] ZHANG Z, LI L, ZHAO W. Tool life prediction model based on GA-BP neural network[J]. Materials Science Forum, 2016, 836-837: 256-262 [9] LIU Y, HE B, FANG L, et al. Remaining useful life prediction of rolling bearings using PSR, JADE, and extreme learning machine[J]. Mathematical Problems in Engineering:Theory, Methods and Applications, 2016, 2016(4): 8623530 [10] REN L, SUN Y, WANG H, et al. Prediction of bearing remaining useful life with deep convolution neural network[J]. IEEE Access, 2018, 6: 13041-13049 [11] CHANG Z, YUAN W, HUANG K. Remaining useful life prediction for rolling bearings using multi-layer grid search and LSTM[J]. Computers and Electrical Engineering, 2022, 101: 108083 [12] QUE Z, JIN X, XU Z. Remaining useful life prediction for bearings based on a gated recurrent unit[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3511411 [13] WANG Z, ZHANG Q, XIONG J, et al. Fault diagnosis of a rolling bearing using wavelet packet denoising and random forests[J]. IEEE Sensors Journal, 2017, 17(17): 5581-5588 [14] ISLAM M, KIM J M. Automated bearing fault diagnosis scheme using 2D representation of wavelet packet transform and deep convolutional neural network[J]. Computers in Industry, 2019, 106: 142-153 [15] LI X, ZHANG L, WANG Z, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. The Journal of Energy Storage, 2019, 21: 510-518 [16] YAO L, FANG Z, XIAO Y, et al. An intelligent fault diagnosis method for lithium battery systems based on grid search support vector machine[J]. Energy, 2021, 214: 118866 [17] ABDI H, WILLIAMS L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews Computational Statistics, 2010, 2(4): 433-459 [18] 王奕森, 夏树涛. 集成学习之随机森林算法综述[J]. 信息通信技术, 2018, 12(1): 49-55 WANG Yisen, XIA Shutao. A survey of random forests algorithms[J]. Information and Communications Technologies, 2018, 12(1): 49-55 [19] SAMANTA A, CHOWDHURI S, WILLIAMSON S S. Machine learning-based data-driven fault detection/diagnosis of lithium-ion battery: A critical review[J]. Electronics, 2021, 10(11): 1309
|