[1] 刘献礼, 李雪冰, 丁明娜, 等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10): 196-219 LIU Xianli, LI Xuebing, DING Mingna, et al. Intelligent management and control technology of cutting tool life-cycle for intelligent manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(10): 196-219 [2] 聂鹏, 杨程越, 彭新月, 等. 采用scSE优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测[J/OL]. 中国机械工程: 1-10[2024-02-03]. http://kns.cnki.net/kcms/detail/42.1294.TH.20231220.1625.006.html. NIE Peng, YANG Chengyue, PENG Xinyue, et al. Tool wear condition monitoring for drilling CFRP/TC4 laminated materials using scSE optimised ResNet-50[J/OL]. China Mechanical Engineering: 1-10[2024-02-03]. http://kns.cnki.net/kcms/detail/42.1294.TH.20231220.1625.006.html. [3] 刘辉, 张超勇, 戴稳. 基于堆叠稀疏去噪自动编码网络与多隐层反向传播神经网络的铣刀磨损预测模型[J]. 计算机集成制造系统, 2021, 27(10): 2801-2812 LIU Hui, ZHANG Chaoyong, DAI Wen. Prediction model of milling cutter wear based on SSDAE-BPNN[J]. Computer Integrated Manufacturing Systems, 2021, 27(10): 2801-2812 [4] ZHOU J J, YU J B. Chisel edge wear measurement of high-speed steel twist drills based on machine vision[J]. Computers in Industry, 2021, 128: 103536 [5] 刘会永, 张松, 李剑峰, 等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33(16): 1940-1947 LIU Huiyong, ZHANG Song, LI Jianfeng, et al. Tool wear detection based on improved CNN-BiLSTM model[J]. China Mechanical Engineering, 2022, 33(16): 1940-1947 [6] 戴稳, 张超勇, 孟磊磊, 等. 采用深度学习的铣刀磨损状态预测模型[J]. 中国机械工程, 2020, 31(17): 2071-2078 DAI Wen, ZHANG Chaoyong, MENG Leilei, et al. Prediction model of milling cutter wear status based on deep learning[J]. China Mechanical Engineering, 2020, 31(17): 2071-2078 [7] 段暕, 周宏娣, 刘智勇, 等. 基于改进PCANet模型的铣刀磨损预测方法研究[J]. 机械工程学报, 2023, 59(1): 278-285 DUAN Jian, ZHOU Hongdi, LIU Zhiyong, et al. Milling tool wear prediction research based on optimized PCANet model[J]. Journal of Mechanical Engineering, 2023, 59(1): 278-285 [8] 刘洪成, 袁德志, 朱锟鹏. 基于高斯过程潜力模型的刀具磨损预测[J]. 机械工程学报, 2023, 59(17): 310-324 LIU Hongcheng, YUAN Dezhi, ZHU Kunpeng. Tool wear prediction based on Gaussian process latent force model[J]. Journal of Mechanical Engineering, 2023, 59(17): 310-324 [9] ZENDEHDEL N, CHEN H, LEU M C, et al. Real-time tool detection in smart manufacturing using You-Only-Look-Once (YOLO) v5[J]. Manufacturing Letters, 2023, 35: 1052-1059 [10] HE Z, LIU Q. Deep regression neural network for industrial surface defect detection[J]. IEEE Access, 2020, 8: 35583-35591 [11] LIU J, WANG S, ZHU Q, et al. Overhead transmission line condition assessment based on intention classification and slot filling using optimized BERT model[J]. Energy Reports, 2023, 9: 838-846 [12] 陈光林, 于丽娅, 张成龙, 等. 基于麻雀算法优化宽度学习系统的轴承故障诊断[J]. 工业工程, 2023, 26(3): 151-158 CHEN Guanglin, YU Liya, ZHANG Chenglong, et al. Bearing fault diagnosis using sparrow algorithm to optimize broad learning systems[J]. Industrial Engineering Journal, 2023, 26(3): 151-158 [13] 周昊飞. 基于GRU神经网络的自相关过程残差控制图[J]. 工业工程, 2022, 25(1): 108-113 ZHOU Haofei. GRU Neural network-based residual control chart for autocorrelated processes[J]. Industrial Engineering Journal, 2022, 25(1): 108-113 [14] 何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967 HE Yan, LING Junjie, WANG Yulin, et al. In-process tool wear monitoring model based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16): 1959-1967 [15] 狄子钧, 袁东风, 李东阳, 等. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J/OL]. 机械工程学报: 1-9[2024-02-06]. http://kns.cnki.net/kcms/detail/11.2187.TH.20220414.0947.002.html. DI Zijun, YUAN Dongfeng, LI Dongyang, et al. Tool Fault Diagnosis Method Based on Multiscale-Efficient ChannelAttention Network [J/OL]. Journal of Mechanical Engineering: 1-9 [2024-02-06]. http://kns.cnki.net/kcms/detail/11.2187.TH.20220414.0947.002.html. [16] 董成祥, 魏昕, 张坤鹏, 等. 基于图卷积网络的乘客打车需求预测[J]. 工业工程, 2022, 25(5): 98-105 DONG Chengxiang, WEI Xin, ZHANG Kunpeng, et al. Passenger ride-hailing demand prediction based on graph convolutional networks[J]. Industrial Engineering Journal, 2022, 25(5): 98-105 [17] 张蓝天, 石宇强. 考虑特征学习的IPSO-LSTM晶圆加工周期预测[J]. 工业工程, 2023, 26(3): 143-150 ZHANG Lantian, SHI Yuqiang. Wafer cycle time prediction of IPSO-LSTM considering feature learning[J]. Industrial Engineering Journal, 2023, 26(3): 143-150 [18] LUO J, ZHANG X. Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction[J]. Applied Intelligence, 2022, 52: 1-16 [19] PHM Society. PHM data challenge 2010[C/OL]//Annual Conference of the Prognostics and Health Management Society 2015. (2015-10-18) . Coronado, California: PHM Society. https: // www. phmsociety. org/ competition/phm/10 . [20] WANG L, LONG J, LI X, et al. Industrial units modeling using self-attention network based on feature selection and pattern classification[J]. Chemical Engineering Research and Design, 2023, 200: 176-185
|