[1] LEE P H, TORNG C C, LIAO L F. An economic design of combined double sampling and variable sampling interval X control chart[J]. International Journal of Production Economics, 2012, 138(6): 102–106. [2] COSTA A F B, MACHADO M A G. Variable parameter and double sampling X charts in the presence of correlation: the Markov chain approach[J]. International Journal of Production Economics, 2011, 130(9): 224–229. [3] 马义中, 田甜, 刘利平. 自相关过程协方差阵的残差MEWMA控制图[J]. 系统工程学报, 2012, 27(2): 279-286 MA Yizhong, TIAN Tian, LIU Liping. Residual-based MEWMA control chart for the covariance matrix of autocorrelated processes[J]. Journal of Systems Engineering, 2012, 27(2): 279-286 [4] WRIGHT C M, BOOTH D E, HU M Y. Joint estimation: SPC method for short–run autocorrelated data[J]. Journal of Quality Technology, 2001, 33(3): 365-378 [5] 张黎, 董晓阳. 可变抽样区间 ARMA 控制图经济设计[J]. 系统仿真学报, 2018, 30(10): 3869-3874 ZHANG Li, DONG Xiaoyang. Economic design of VSI ARMA charts[J]. Journal of System Simulation, 2018, 30(10): 3869-3874 [6] KALGONDA A A, KULKARNI S R. Multivariate quality process control for autocorrelated processes[J]. Journal of Applied Statistics, 2004, 31(3): 317-327 [7] GUH R S. A hybrid learning-based model for on-line detection and analysis of control chart patterns[J]. Computers and Industrial Engineering(S, 0360, -8352),2005,49(1): 35-62 [8] 孙静. 自相关过程的残差控制图[J]. 清华大学学报(自然科学版), 2002, 42(6): 735-738 SUN Jing. Residual charts for autocorrelated processes[J]. Journal of Tsinghua University (Science & Technology), 2002, 42(6): 735-738 [9] ALSHRAIDEH H, RUNGER G. Process monitoring using hidden markov models[J]. Quality and Reliability Engineering, 2014, 30(8): 1379-1387 [10] ALBARRACIN O Y E, ALENCAR A P, HO LL. CUSUM chart to monitor autocorrelated counts using negative binomial GARMA model[J]. Statistical Methods in Medical Research, 2017, 27(9): 2859-2871 [11] 肖艳, 李亚平, 俞少君. 残差控制图应用中的自相关过程模型研究[J]. 工业工程与管理, 2020, 25(4): 69-76 XIAO Yan, LI Yaping, YU Shaojun. Research on selection of autocorrelation process model in statistical process control[J]. Industrial Engineering and Management, 2020, 25(4): 69-76 [12] ZOBEL C W, COOK D F, NOTTINGHAM Q J. An augmented neural network classification approach to detecting mean shifts in correlated manufacturing process parameters[J]. International Journal of Production Research, 2004, 42(4): 758 [13] CHINNAM R B. Support vector machines for recognizing shifts in correlated and other manufacturing processes[J]. International Journal of Production Research, 2002, 40(17): 4449-4466 [14] WHITE A K, SAFI S K. The efficiency of artificial neural networks for forecasting in the presence of autocorrelated disturbances[J]. International Journal of Statistics and Probability, 2016, 5(2): 51-58 [15] ISSAM B K, MOHAMED L. Support vector regression based residual MCUSUM control chart for autocorrelated process[J]. Applied Mathematics and Computation, 2008, 201(1): 565-574 [16] CHEN S, YU J. Deep recurrent neural network–based residual control chart for autocorrelated processes[J]. Quality and Reliability Engineering International, 2019, 35(4): 1-22 [17] 欧阳红兵, 黄亢, 闫洪举. 基于LSTM神经网络的金融时间序列预测[J]. 中国管理科学, 2020, 28(4): 27-35 OUYANG Hongbing, HUANG Kang, YAN Hongju. Prediction of financial times series based on LSTM neural network[J]. Chinese Journal of Management Science, 2020, 28(4): 27-35 [18] XIANG Wang, LI Feng, WANG Jiaxu. Quantum weighted gated recurrent unit neural network and its application in performance degradation trend prediction of rotating machinery[J]. Neurocomputing, 2018, 313(3): 85-95 [19] FISCHER T, KRAUSS C. Deep learning with long short-term memory networks for financial market predictions[J]. European Journal of Operational Research, 2017, 270(2): 654-669. [20] 刘明宇, 吴建平, 王钰博, 等. 基于深度学习的交通流量预测[J]. 系统仿真学报, 2018, 30(11): 4100-4105 LIU Mingyu, WU Jianping, WANG Yubo, et al. Traffic flow prediction based on deep learning[J]. Journal of System Simulation, 2018, 30(11): 4100-4105
|