[1] 王毅, 陈启鑫, 张宁, 等. 5G通信与泛在电力物联网的融合: 应用分析与研究展望[J]. 电网技术, 2019, 43(5): 1575-1585 WANG Yi, CHEN Qixin, ZHANG Ning, et al. Fusion of the 5G communication and the ubiquitous electric internet of things: application analysis and research prospects[J]. Power System Technology, 2019, 43(5): 1575-1585 [2] 夏旭, 朱雪田, 梅承力, 等. 5G切片在电力物联网中的研究和实践[J]. 移动通信, 2019, 43(1): 63-69 XIA Xu, ZHU Xuetian, MEI Chengli, et al. Research and practice on 5G slicing in power internet of things[J]. Mobile Communications, 2019, 43(1): 63-69 [3] 张聪, 樊小毅, 刘晓腾, 等. 边缘计算使能智慧电网[J]. 大数据, 2019, 5(2): 64-78 ZHANG Cong, FAN Xiaoyi, LIU Xiaoteng, et al. Edge computing enabled smart grid[J]. Big Data Research, 2019, 5(2): 64-78 [4] 刘彩霞, 胡鑫鑫. 5G网络切片技术综述[J]. 无线电通信技术, 2019, 45(6): 569-575 LIU Caixia, HU Xinxin. Overview of 5G network slicing technology[J]. Radio Communications Technology, 2019, 45(6): 569-575 [5] NAQVI S A A, JAVAID N, BUTT H, et al. Metaheuristic optimization technique for load balancing in cloud-fog environment integrated with smart grid [C]//Proceeding of the 21st International Conference on Network-Based Information Systems. Slovakia, Switzerland: Springer, Cham, 2018. [6] 唐昊洋, 李晓坤, 陈虹旭, 等. 基于URLLC技术在智慧电网控制的应用[J]. 电测与仪表, 2021, 58(2): 75-80 TANG Haoyang, LI Xiaokun, CHEN Hongxu, et al. Application of URLLC technology in smart grid control[J]. Electrical Measurement & Instrumentation, 2021, 58(2): 75-80 [7] 吕聪敏, 熊伟. 基于5G切片和MEC技术的智能电网总体框架设计[J]. 电力信息与通信技术, 2020, 18(8): 54-60 LYU Congmin, XIONG Wei. Research on the framework of smart grid based on 5G slicing and MEC technology[J]. Electric Power Information and Communication Technology, 2020, 18(8): 54-60 [8] 魏向欣, 何涛, 李一航, 等. 5G网络切片承载电力系统业务的时延特性研究[J]. 电力信息与通信技术, 2019, 17(8): 7-12 WEI Xiangxin, HE Tao, LI Yihang, et al. Research on time delay characteristics of 5G network slice in carrying power communication service[J]. Electric Power Information and Communication Technology, 2019, 17(8): 7-12 [9] ELBAMBY M S, BENNIS M , SAAD W, et al. Proactive edge computing in latency-constrained fog networks [C]//Proceeding of European Conference on Networks and Communications. Oulu Piscataway, NJ: IEEE, 2017. [10] JI H, PARK S, YEO J, et al. Ultra-reliable and low-latency communications in 5G downlink: Physical layer aspects[J]. IEEE Wireless Communications, 2018, 25(3): 124-130 [11] LIU J, ZHANG Q. Reliability and latency aware code-partitioning offloading in mobile edge computing [C]// Proceeding of IEEE Wireless Communications and Networking Conference. Marrakesh, Morocco Piscataway, NJ: IEEE, 2019. [12] YILMAZ O N C , WANGY P E , JOHANSSON N A , et al. Analysis of ultra-reliable and low-latency 5G communication for a factory automation use case [C]// Proceeding of IEEE International Conference on Communication Workshop. London Piscataway, NJ: IEEE, 2015. [13] MINH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning [J/OL]. Computer Science-Learning, 2013, (2013-12-19). http://arxiv.org/pdf/1312.5602.pdf. [14] DONG R, SHE C, HARDJAWANA W, et al. Deep learning for hybrid 5G services in mobile edge computing systems: Learn from a digital twin[J]. IEEE Transactions on Wireless Communications, 2019, 18(10): 4692-4707 [15] BERTSEKAS D P. Nonlinear programming [M]. Belmont: Athena Scientific, 1999. [16] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [C]// Proceeding of Neural Information Processing Systems. New York: ACM, 2012. [17] 陈俊, 黄飞宇, 黎作明. 基于DQN的电力物联网5G边缘切片资源管理研究[J/OL]. 电测与仪表, [2021-11-10]. http://kns.cnki.net/kcms/detail/23.1202.TH.20210930.1329.002.html. [18] SU Z, WANG Y, LUAN T, et al. Secure and efficient federated learning for smart grid with edge-cloud collaboration[J/OL]. IEEE Transactions on Industrial Informatics, 2021, (2021-07). http://10.1109/TII.2021.3095506. [19] 潘峰, 李珊, 张春明. 5G端到端切片SLA行业需求研究[R/OL]. 中国信息通信研究院, [2020-09-23]. https://blog.csdn.net/uxuepai5g/article/details/108906485.
|