[1] YUE L, GUAN Z, HE C, et al. Slotting optimization of automated storage and retrieval system (AS/RS) for efficient delivery of parts in an assembly shop using genetic algorithm: a case Study[C/OL]. (2016-04-01). https://iopscience.iop.org/article/10.1088/1757-899X/215/1/012002. [2] BOROVINEK M, EKREN B Y, BURINSKIEN A, et al. Multi-objective optimisation model of shuttle-based storage and retrieval system[J]. Transport, 2017, 32(2): 1-18 [3] HAMZAOUI M A, SARI Z. Optimal dimensions minimizing expected travel time of a single machine flow rack AS/RS[J]. Mechatronics, 2015, 31: 158-168 [4] 杨玮, 傅卫平, 王雯. 自动化立体仓库旋转货架拣货路径优化[J]. 机械科学与技术, 2012, 31(3): 424-428 YANG Wei, FU Weiping, WANG Wen. Optimization of picking path for rotating racks in automated warehouse[J]. Mechanical Science and Technology, 2012, 31(3): 424-428 [5] 印美, 洪荣晶, 刘林. 基于非支配遗传算法的自动化仓库动态货位优化[J]. 组合机床与自动化加工技术, 2015(3): 31-34 YIN Mei, HONG Rongjing, LIU Lin. Dynamic storage optimization of automated warehouse based on non-dominated genetic algorithm[J]. Modular Machine Tool and Automatic Manufacturing Technology, 2015(3): 31-34 [6] 张思建, 方彦军, 贺瑶, 等. 基于模拟退火算法的AVS/RS多批货箱入库货位优化[J]. 武汉大学学报(工学版), 2016, 49(2): 315-320 ZHANG Sijian, FANG Yanjun, HE Yao, et al. AVS/RS multi-batch storage location optimization based on simulated annealing algorithm[J]. Journal of Wuhan University (Engineering Edition), 2016, 49(2): 315-320 [7] 肖锋. 基于强化学习的库位优化算法在物料拉动系统中的研究与应用[D]. 成都: 西南交通大学, 2015. XIAO Feng. Research and application of storage location optimization algorithm based on reinforcement learning in material pulling system[D]. Chengdu: Southwest Jiaotong University, 2015. [8] MA Y, YUN W, HOU W. The research progress of genetic algorithm in the large warehouse system[C/OL]. (2011-01-13). https://ieeexplore.ieee.org/document/5662823. [9] ATMACA E, OZTURK A. Defining order picking policy: a storage assignment model and a simulated annealing solution in AS/RS systems[J]. Applied Mathematical Modelling, 2013, 37(7): 5069-5079 [10] MUPPANI V R, ADIL G K. Efficient formation of storage classes for warehouse storage location assignment: a simulated annealing approach[J]. Omega, 2008, 36(4): 609-618 [11] CHEN Y, HE F. Research on particle swarm optimization in location assignment optimization[C/OL]. (2008-08-08). https://ieeexplore.ieee.org/document/4594428. [12] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[J]. IEEE Transactions on Neural Networks, 1998, 9(5): 1040-1054 [13] EGOROV M. Multi-agent deep reinforcement learning[DB/OL]. [2020-04-10]. http://cs231n.stanford.edu/reports/2016/pdfs/122_Report.pdf. [14] 杜威, 丁世飞. 多智能体强化学习综述[J]. 计算机科学, 2019, 46(8): 1-8 DU Wei, DING Shifei. A review of multi-agent reinforcement learning[J]. Computer Science, 2019, 46(8): 1-8 [15] RYAN Lowe. Multi-agent actor-critic for mixed cooperative-competitive environments[C]. Advances in Neural Information Processing Systems. Long Beach, USA: Curran Associates, 2017: 6379-6390. [16] 焦玉玲, 张鹏, 田广东, 等. 基于多种群遗传算法的自动化立体库货位优化[J]. 吉林大学学报(工学版), 2018, 48(5): 1398-1404 JIAO Yuling, ZHANG Peng, TIAN Guangdong, et al. Automated three-dimensional warehouse location optimization based on multi-population genetic algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(5): 1398-1404 [17] LITTMAN M L. Markov games as a framework for multi-agent reinforcement learning[C/OL]. (1994-07-10). https://doi.org/10.1016/B978-1-55860-335-6.50027-1. [18] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning [DB/OL]. (2019-06-05). https://arxiv.org/abs/1509.02971.
|