[1] FRANCESCHINI F, GALETTO M, GENTA G, et al. Selection of quality-inspection procedures for short-run productions[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9): 2537-2547 [2] 曾婷, 黄东军. 智能视频监控系统异常行为检测算法研究综述[J]. 计算机测量与控制, 2021, 29(7): 1-6 ZENG Ting, HUANG Dongjun. A survey of detection algorithms for abnormal behaviors in intelligent video surveillance system[J]. Computer Measurement & Control, 2021, 29(7): 1-6 [3] 刘晓华, 高俊成, 王少林, 等. 智能电网异常用电检测框架[J]. 自动化技术与应用, 2020, 39(12): 124-128 LIU Xiaohua, GAO Juncheng, WANG Shaolin, et al. Smart grid abnormal power detection framework[J]. Techniques of Automation and Applications, 2020, 39(12): 124-128 [4] 丁小欧, 于晟健, 王沐贤, 等. 基于相关性分析的工业时序数据异常检测[J]. 软件学报, 2020, 31(3): 726-747 DING Xiaoou, YU Shengjian, WANG Muxian, et al. Anomaly detection on industrial time series based on correlation analysis[J]. Journal of Software, 2020, 31(3): 726-747 [5] 盛铭, 陈凌珊, 汪俊杰, 等. 基于单分类支持向量机的CAN总线异常检测方法[J]. 汽车技术, 2020(5): 21-25 SHENG Ming, CHEN Lingshan, WANG Junjie, et al. Abnormity detection method for in-vehicle CAN bus based on one-class SVM[J]. Automobile Technology, 2020(5): 21-25 [6] 张丹丹, 游子毅, 郑建, 等. 基于改进的局部异常因子检测的优化聚类算法[J]. 微电子学与计算机, 2019, 36(11): 43-48 ZHANG Dandan, YOU Ziyi, ZHENG Jian, et al. Optimal clustering algorithm based on modified local outlier factor detection[J]. Microelectronics & Computer, 2019, 36(11): 43-48 [7] 张怀峰, 皮德常, 董玉兰. iBTC: 一种基于独立森林的移动对象轨迹聚类算法[J]. 计算机科学, 2019, 46(1): 251-259 ZHANG Huaifeng, PI Dechang, DONG Yulan. iBTC: a trajectory clustering algorithm based on isolation forest[J]. Computer Science, 2019, 46(1): 251-259 [8] STOJANOVIC L , DINIC M , STOJANOVIC N, et al. Big-data-driven anomaly detection in industry (4.0) : an approach and a case study[C]//2016 IEEE International Conference on Big Data (Big Data). Washington DC, USA: IEEE, 2016: 1647-1652. [9] HINTON G, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2014, 18(7): 1527-1554 [10] CHERLA S, TRAN S N, GARCEZ A D, et al. Generalising the discriminative restricted boltzmann machines[C]//Artificial Neural Networks and Machine Learning-ICANN 2017. Alghero, Italy: Springer, 2017: 10614. [11] ZHAI S, CHENG Yu, LU W, et al. Deep structured energy based models for anomaly detection[C]//The 33rd International Conference on Machine Learning. New York, USA: JMLR: W&CP, 2016: 48. [12] DO K, TRAN T, PHUNG D, et al. Outlier detection on mixed-type data: an energy-based approach[C]//Advanced data mining and applications 2016. Australia: Springer, 2016: 10086. [13] FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C]//Pattern Recognition, Image Analysis, Computer Vision, and Applications 2012. Berlin Heidelberg: Springer, 2012: 7441. [14] HINTON G. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800 [15] KRIZHEVSKY A. Learning multiple layers of features from tiny images[R/OL]. (2012-05) . http://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf. [16] HINTON G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 926-947 [17] HE R, LI Q, BO A, et al. A kernel-power-density-based algorithm for channel multipath components clustering[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7138-7151 [18] 瞿先中, 张劲, 蒋士盛, 等. 细支卷烟烟支物理指标相关性分析[J]. 湖南文理学院学报 (自然科学版), 2020, 32(4): 64-68 QU Xianzhong, ZHANG Jing, JIANG Shisheng, et al. Correlation analysis of physical indicators in slim cigarettes[J]. Journal of Hunan University of Arts and Science (Science and Technology), 2020, 32(4): 64-68 [19] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2011, 12(1): 2825-2830
|