[1] 何洋洋, 贾嵘, 李辉. 基于随机共振和多维度排列熵的水电机组振动故障诊断[J]. 水利发电学报, 2015, 34(12): 123-130 HE Yangyang, JIA Rong, LI Hui. Vibration fault diagnosis of hydropower unit by using stochastic resonance and multidimensional permutation entropy[J]. Journal of Hydroelectric Engineering, 2015, 34(12): 123-130 [2] FREI M G, OSORIO I. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of nonstationary signal[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321-342 [3] 余建波, 吕靖香, 程辉. 基于ITD和改进形态滤波的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2018, 44(2): 241-249 YU Jianbo, LYU Jingxiang, CHENG Hui. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249 [4] 武佳奇. 基于ITD和最大熵谱分析的往复压缩机气阀故障特征提取方法研究[D]. 大庆: 东北石油大学, 2019. WU Jiaqi . Research on fault feature extraction method of reciprocating compressor valve based on ITD and maximum entropy spectrum analysis[D]. Daqing: Northeast Petroleum University, 2019. [5] 张雅丽, 刘永姜, 张航. 基于ITD信息熵与PNN的轴承故障诊断[J]. 煤矿机械, 2019, 40(12): 167-169 ZHANG Yali, LIU Yongjiang, ZHANG Hang. Bearing fault diagnosis based on ITD information entropy and PNN[J]. Coal Mine Machinery, 2019, 40(12): 167-169 [6] 吴涛, 熊新, 吴建德, 等, 基于QH-ITD和AMCKD的滚动轴承故障诊断研究[J]. 电子测量与仪器学报, 2020, 34 (4) : 79-89. WU Tao, XIONG Xin, WU Jiande, et al. Research on fault diagnosis of rolling bearing based on QH-ITD and AMCKD[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34 (4) : 79-89. [7] BENZI R, PARISI G, SUTERA A, et al. A theory of stochastic resonance in climatic change[J]. SIAM Journal on Applied Mathematics, 1983, 43(3): 565-578 [8] 胡茑庆. 随机共振微弱特征信号检测理论与方法[M]. 北京: 国防工业出版社, 2012: 42-47. [9] 李一博, 张博林, 刘自鑫, 等. 基于量子粒子群算法的自适应随机共振方法研究[J]. 物理学报, 2014, 63(16): 40-47 LI Yibo, ZHANG Bolin, LIU Zixin, et al. Adaptive stochastic resonance method based on quantum particle swarm optimization[J]. Acta Physica Sinica, 2014, 63(16): 40-47 [10] CHI K, KANG J, ZHANG X, et al. Bearing fault diagnosis based on stochastic resonance with cuckoo search[J]. International Journal of Performability Engineering, 2018, 14(3): 413-424 [11] YANG X . Nature-inspired metaheuristic algorithms second edition[M]. London: Luniver Press, 2010. [12] BECHHOEFER E. Condition based maintenance fault database for testing of diagnostic and prognostics algorithms[DB/OL]. (2013-04-10). https://mfpt.org/fault-data-sets/.
|