[1] KASPI M, RAVIV T, TZUR M. Bike-sharing systems: user dissatisfaction in the presence of unusablebicycles[J]. IISE Transactions, 2017, 49(2): 144-158 [2] KASPI M, RAVIV T, TZUR M. Detection of unusable bicycles in bike-sharing systems[J]. Omega:The International Journal of Management Science, 2016, 65(12): 10-16 [3] 赵明明. 数据驱动下的共享单车调度优化研究[D]. 大连: 大连理工大学, 2019. ZHAO Mingming. Optimization of bike sharing scheduling problem based on data driven methodology[D]. Dalian: Dalian University of Technology, 2019. [4] ZHANG C, LI Y, BAO J, et al. Effective recycling planning for dockless sharing bikes[C]//SIGSPA TIAL'19: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. Chicago IL USA: SIGSPATIAL, 2019: 62-70. [5] 张巍, 李鹏翔, 仝自强, 等. 基于损坏车辆分布预测与损益阈值分析下的共享单车回收研究[J]. 工业工程, 2020, 23(3): 132-137 ZHANG Wei, LI Pengxiang, TONG Ziqiang, et al. Research on shared bicycle recycling based on distribution prediction of broken vehicles and profit and loss threshold analysis[J]. Industrial Engineering Journal, 2020, 23(3): 132-137 [6] 常山. 基于空间聚类的共享单车故障车辆回收线路优化方法研究[D]. 北京: 北京交通大学, 2019. CHANG Shan. Research on the recycling route optimization of faulty bike sharing based on spatial clustering[D]. Beijing: Beijing Jiaotong University, 2019. [7] 陈华友, 朱家明, 丁珍妮. 组合预测模型与方法研究综述[J]. 大学数学, 2017, 33(4): 1-10 CHENG Huayou, ZHU Jiaming, DING Zhenni. A survey of researches on combination forecasting models and methodologies[J]. College Mathematics, 2017, 33(4): 1-10 [8] 周惠成, 张改红, 王国利. 基于熵权的水库防洪调度多目标决策方法及应用[J]. 水利学报, 2007, 38(1): 100-106 ZHOU Huicheng, ZHANG Gaihong, WANG Guoli. Multi-objective decision making approach based on entropy weight for reservoir flood control operation[J]. Journal of Hydraulic Engineering, 2007, 38(1): 100-106 [9] 杨茂, 齐玥, 穆钢, 等. 基于改进熵权法的风电功率组合预测方法[J]. 电测与仪表, 2015, 52(15): 46-49 YANG Mao, QI Yue, MU Gang, et al. A combination prediction study for wind power based on improved entropy method[J]. Electrical measurement and instrument, 2015, 52(15): 46-49 [10] GUO Yinglei, LI Yanzhen, CHENG Kaiqiang, et al. Power quality prediction based on BP neural network[C]//Institute of Management Science and Industrial Engineering. Proceedings of 2018 2nd International Conference on Computer Science and Intelligent Communication. Xi'an: Institute of Management Science and Industrial Engineering, 2018: 180-186. [11] ZHAO Linlin, LIU Runzhi, WU Jianzhong, et al. Wrestling performance prediction based on improved RBF neural network[J]. Journal of Physics Conference Series, 2020, 1629: 012012 [12] LI Xiaoyu, ZHANG Lei, WANG Zhenpo, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and ELMAN neural networks[J]. Journal of Energy Storage, 2019, 21: 510-518 [13] BATES J M, GRANGER C. The combination of forecasts[J]. Journal of the Operational Research Society, 1969, 20(4): 451-468 [14] ZHANG Lipeng, LIU Wei, QI Bingnan. Combined prediction for vehicle speed with fixed route[J]. Chinese Journal of Mechanical Engineering, 2020, 33(4): 121-133 [15] 郑绪枝, 雷靖, 夏薇. 基于快速确定隐层神经元数的BP神经网络算法[J]. 计算机科学, 2012, 39(S1): 432-436 ZHENG Xuzhi, LEI Jing, XIA Wei. Algorithm for BP neural networks by identifying numbers of hidden layer neurons quickly[J]. Computer Science, 2012, 39(S1): 432-436 [16] 王雪梅, 郭旷, 秦连群, 等. 基于熵权法的农村公路线网规模组合预测[J]. 华东交通大学学报, 2020, 37(2): 89-96 WANG Xuemei, GUO Kuang, QIN Lianqun, et al. Combination forecasting of rural road network scale based on entropy weight method[J]. Journal of East China Jiaotong University, 2020, 37(2): 89-96
|