[1] 崔德冠. 基于公交车GPS数据的城市道路偶发性拥堵检测与系统实现[D]. 重庆: 重庆大学, 2015. CUI Deguan. The detection and system implementation of urban road contingency jam based on bus GPS data [D]. Chongqing: Chongqing University, 2015. [2] 周映雪, 杨小宝, 环梅, 等. 基于生存分析的城市道路交通拥堵持续时间研究[J]. 应用数学和力学, 2013, 34(1): 98-106 ZHOU Yingxue, YANG Xiaobao, HUAN Mei, et al. Survival analysis approach for estimating urban traffic congestion duration[J]. Applied Mathematics and Mechanics, 2013, 34(1): 98-106 [3] 吴义虎, 李意芬, 喻伟, 等. 基于元胞自动机的城市道路偶发性拥堵交通行为模拟[J]. 交通科学与工程, 2014, 30(2): 72-78 WU Yihu, LI Yifen, YU Wei, et al. A simulation of the traffic behavior of the propagation of urban coincidental traffic jams based on the cellular automata model[J]. Traffic Science and Engineering, 2014, 30(2): 72-78 [4] 秦韬. 城市道路偶发性局部拥堵快速识别办法研究[D]. 长沙: 长沙理工大学, 2014. QIN Tao. Research on quickly recognition ways of the urban road non-recurrent local congestion [D]. Changsha: Changsha University of Technology, 2014. [5] 李狄. 城市偶发性局部拥堵协调控制策略研究[D]. 长沙: 长沙理工大学, 2014. LI di. Research of coordinated control strategy on city traffic occasional congestion [D]. Changsha: Changsha University of Technology, 2014. [6] MALERCZYK J, LERCH S, TIBKEN B, et al. Impact of intelligent agents on the avoidance of spontaneous traffic jams on two-lane motorways[J]. MATEC Web of Conferences, 2020, 308(9): 05003 [7] COLD-RAVNKILDE S M, JACOBSEN K L. Disentangling the security traffic jam in the Sahel: constitutive effects of contemporary interventionism[J]. International Affairs, 2020, 96(4): 855-874 [8] SUDATTA M, ALEXEY P, MICHAEL C. Region-wide congestion prediction and control using deep learning[J]. Transportation Research, 2020, 116(7): 102624.1-102624.21 [9] ABEER A H, ZIAD A, TIMOTHY M, et al. Novel Congestion-estimation and routability-prediction methods based on machine learning for modern FPGAs[J]. ACM Transactions On Reconfigurable Technology and Systems, 2019, 3(12): 16.1-16.25 [10] KOBAYASHI H, KITANO T, OKAMOTO M, et al. MAGONIA (DPB: distributed processing base) applied to a traffic congestion prediction and signal control system[J]. NTT Technical Review, 2016, 14(10): 1-4 [11] 管硕. 基于SVM和K-均值聚类的RBF神经网络短时交通流预测[D]. 青岛: 青岛大学, 2015. GUAN Shuo. Short term traffic flow prediction of RBF neural network based on SVM and K-means clustering [D]. Qingdao: Qingdao University, 2015. [12] 章国勇, 伍永刚, 顾巍. 基于精英学习的量子行为粒子群算法[J]. 控制与决策, 2013, 28(9): 1341-1348 ZHANG Guoyong, WU Yonggang, GU Wei. Quantum-behaved particle swarm optimization algorithm based on elitist learning[J]. Control and Decision, 2013, 28(9): 1341-1348 [13] 朱震曙, 薄煜明, 吴盘龙, 等. Short-term power load forecasting model based on QPSO-RBFNN[J]. 南京理工大学学报, 2016, 40(1): 97-101 ZHU Zhenshu, BO Yuming, WU Panlong, et al. Short term power load forecasting model based on QPSO-RBFNN[J]. Journal of Nanjing University of Science and Technology, 2016, 40(1): 97-101 [14] LIU J, Sun J, XU W B. Improving quantum-behaved particle swarm optimization by simulated annealing[J]. Computational Intelligence and Bioinformatics, 2006, 4115: 130-136 [15] CHEN D B, WANG J T. An improved group search optimizer with operation of quantum-behaved swarm and its application[J]. Applied Soft Computing, 2012, 12(2): 712-725 [16] SUN J, FANG W, PALADE V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point[J]. Applied Mathematics and Computation, 2011, 218(7): 3763-3775
|