[1] SEDIGHEH M, MOHAMMAD E S, SHAHRYAR R. Metaheuristics in large-scale global continues optimization: a survey[J]. Information Sciences, 2015, 295: 407-428 [2] 龙文, 蔡绍洪, 焦建军, 等. 求解大规模优化问题的改进鲸鱼优化算法[J]. 系统工程理论与实践, 2017, 37(11): 2983-2994 LONG Wen, CAI Shaohong, JIAO Jianjun, et al. Improved whale optimization algorithm for large scale optimization problems[J]. Systems Engineering— Theory & Practice, 2017, 37(11): 2983-2994 [3] MOHAPATRA P, DAS K N, ROY S. A modified competitive swarm optimizer for large scale optimization problems[J]. Applied Soft Computing, 2017, 59: 340-362 [4] LONG W, JIAO J J, LIANG X M, et al. Inspired grey wolf optimizer for solving large-scale function optimization problems[J]. Applied Mathematical Modelling, 2018, 60: 112-126 [5] 吴泽忠, 宋菲. 基于改进螺旋更新位置模型的鲸鱼优化算法[J]. 系统工程理论与实践, 2019, 39(11): 2928-2944 WU Zezhong, SONG Fei. Whale optimization algorithm based on improved spiral update position model[J]. Systems Engineering—Theory & Practice, 2019, 39(11): 2928-2944 [6] 刘小龙. 基于统计指导的飞蛾扑火算法求解大规模优化问题[J]. 控制与决策, 2020, 35(4): 901-908 LIU Xiaolong. Moth-flame algorithm based on statistical guidance for large-scale optimization problems[J]. Control and Decision, 2020, 35(4): 901-908 [7] MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249 [8] PELUSID, MASCELLA R, TALLINI L, et al. An improved moth-flame optimization algorithm with hybrid search phase[J]. Knowledge-Based Systems, 2020, 191: 105277 [9] XU Y T, CHEN H L, LUO J, et al. Enhanced moth-flame optimizer with mutation strategy for global optimization[J]. Information Sciences, 2019, 492: 181-203 [10] LI H W, LIU J Y, CHEN L, et al. Chaos-enhanced moth-flame optimization algorithm for global optimization[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1144-1159 [11] LI Y, ZHU X Y, LIU J S. An improved moth-flame optimization algorithm for engineering problems[J]. Symmetry, 2020, 12(8): 1234 [12] MOHAMED A E, AHMED A E, REHAB A I, et al. Opposition-based moth-flame optimization improved by differential evolution for feature selection[J]. Mathematics and Computers in Simulation, 2020, 168: 48-75 [13] 黎素涵, 叶春明. 重选精英个体的非线性收敛灰狼优化算法[J]. 计算机工程与应用, 2021, 57(1): 62-68 LI Suhan, YE Chunming. Improved grey wolf optimizer algorithm using nonlinear convergence factor and elite re-election strategy[J]. Computer Engineering and Applications, 2021, 57(1): 62-68 [14] MOHAMMED H Q, HANY M H, SAAD A. Enhanced salp swarm algorithm: application to variable speed wind generators[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 82-96 [15] SEYEDALI M, AMIR H G, SEYEDEH Z M, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191 [16] 高文欣, 刘升, 肖子雅, 等. 柯西变异和自适应权重优化的蝴蝶算法[J]. 计算机工程与应用, 2020, 56(15): 43-50 GAO Wenxin, LIU Sheng, XIAO Ziya, et al. Butterfly optimization algorithm based on Cauchy variation and adaptive weight[J]. Computer Engineering and Applications, 2020, 56(15): 43-50 [17] JAMIL M, YANG X S. A literature survey of benchmark functions for global optimization problems[J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2013, 4(2): 150-194 [18] TUO S H, ZHANG J Y, YONG L Q, et al. A harmony search algorithm for high-dimensional multimodal optimization problems[J]. Digital Signal Processing, 2015, 46: 151-163 [19] 黄晨晨, 魏霞, 黄德启, 等. 求解高维复杂函数的混合蛙跳–灰狼优化算法[J]. 控制理论与应用, 2020, 37(7): 1655-1666 HUANG Chenchen, WEI Xia, HUANG Deqi, et al. Shuffled frog leaping grey wolf algorithm for solving high dimensional complex functions[J]. Control Theory & Applications, 2020, 37(7): 1655-1666 |