工业工程 ›› 2023, Vol. 26 ›› Issue (4): 85-95.doi: 10.3969/j.issn.1007-7375.2023.04.011

• 系统建模与优化算法 • 上一篇    下一篇

基于改进NSGA-II的铁路项目进度计划多目标优化

周国华, 马依婷   

  1. 西南交通大学 经济管理学院,四川 成都 610031
  • 收稿日期:2022-01-19 发布日期:2023-09-08
  • 作者简介:周国华(1966-),男,江苏省人,教授,博士,主要研究方向为大型工程项目管理
  • 基金资助:
    国家自然科学基金资助项目 (71942006);中国国家铁路集团有限公司科技研究开发计划资助项目 (N2020G039)

Multi-objective Optimization of Railway Project Schedules Based on Modified NSGA-II

ZHOU Guohua, MA Yiting   

  1. School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China
  • Received:2022-01-19 Published:2023-09-08

摘要: 以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-II算法对模型进行求解。算法设计一种分层次选取种群个体的均匀进化精英选择策略,以提高种群多样性和收敛性;同时引入差分进化算法的变异、交叉算子,构造分层多策略自适应变异、交叉算子,以平衡整个种群的局部搜索能力和全局搜索能力。结果表明,增加对特殊活动和施工方向的考虑,可增强模型对铁路项目的适用性;改进后的算法收敛速度快,运行稳定,得到的结果更优,能够满足较大规模铁路项目进度计划优化。

关键词: 重复性项目调度, NSGA-II算法, 工期−费用, 多目标优化

Abstract: With the objective of minimizing the total construction duration and the total cost, a multi-objective optimization model of railway projects is established based on RSM method and an improved NSGA-II algorithm is proposed for the railway construction scenarios including linear, strip, and block activities, where linear activities can be reverse constructed and the construction rates can be variable. The algorithm designs a uniform evolutionary elite selection strategy for hierarchical selection of individuals to improve the population diversity and convergence. Also, the mutation and crossover operators of differential evolution algorithm are introduced to construct hierarchical multi-strategy adaptive mutation and crossover operators to balance the local and global search abilities of the entire population. Results show that the consideration of special activities and construction directions can enhance the applicability of the model to railway projects; the modified algorithm has fast convergence speed, stable operation, and better results, which can satisfy the optimization of large-scale railway project schedules.

Key words: repetitive project scheduling, NSGA-II (non-dominated sorting genetic algorithm-II), duration-cost, multi-objective optimization

中图分类号: