[1] 许骏. 基于复杂网络的传染病突发事件应急管理研究[D]. 武汉: 华中科技大学, 2003. XU Jun. Research of emergency management for infectious disease based on complex networks[D]. Wuhan: Huazhong University of Science &Technology, 2003. [2] TIMBIE J W, RINGEL J S, FOX D S, et al. Systematic review of strategies to manage and allocate scarce resources during mass casualty events[J]. Annals of Emergency Medicine, 2013, 61(6): 677-689 [3] CAUNHYE A M, NIE X, POKHAREL S. Optimization models in emergency logistics: a literature review[J]. Socio-Economic Planning Sciences, 2012, 46(1): 4-13 [4] HAMER W H. Epidemic disease in England—the evidence of variability and of persistency of type[J]. Lancet, 1906, 167(4305): 569-574 [5] KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society A, 1927, 115(772): 700-721 [6] SAHNEH F D, CHOWDHURY F N, SCOGLIO C M. On the existence of a threshold for preventive behavioral responses to suppress epidemic spreading[J/OL]. (2012-09-05). Scientific Reports, 2012, http://10.1038/srep00632. [7] NOWZARI C, PRECIADO V M, PAPPAS G J. Optimal resource allocation for control of networked epidemic models[J]. IEEE Transactions on Control of Network Systems, 2017, 4(2): 159-169 [8] BRAUER F, DRIESSCHE P. Models for transmission of disease with immigration of infectives[J]. Mathematical Biosciences, 2001, 171(2): 143-154 [9] CAPALDI A, BEHREND S, BERMAN B, et al. Parameter estimation and uncertainty quantification for an epidemic model[J]. Mathematical Biosciences & Engineering, 2012, 9(3): 553-576 [10] BRANDEAU M L. Allocating resources to control infectious diseases[M]// BRANDEAU M L, SAINFORT F, PIERSKALLA W P. Operations research and health care: a handbook of methods and applications. Boston: Springer, 2005, 70: 443-464. [11] ALLEN L J S. Some discrete-time SI, SIR, and SIS epidemic models[J]. Mathematical Biosciences, 1994, 124(1): 83-105 [12] 耿辉, 徐安定, 王晓艳, 等. 基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报(自然科学与医学版), 2020, 41(2): 175-180 GENG hui, XU Anding, WANG Xiaoyan, et al. Analysis of the role of current prevention and control measures in the epidemic of Corona virus disease 2019 based on SEIR model[J]. Journal of Jinan University (Natural Science & Medicine Edition), 2020, 41(2): 175-180 [13] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3): 369-374 FAN Ruguo, WANG Yibo, LUO Ming, et al. SEIR-based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3): 369-374 [14] GUO H, LI M Y, SHUAI Z. A graph-theoretic approach to the method of global Lyapunov functions[J]. Proceedings of the American Mathematical Society, 2008, 136(8): 2793-2802 [15] 何雨璇. 突发公共卫生事件中的人道主义医药物资分配[D]. 杭州: 浙江大学, 2016. HE Yuxuan. Humanitarian medical relief allocation in public health emergency[D]. Hangzhou: Zhejiang University, 2016. [16] ZHEN J, MA Z, HAN M. Global stability of an SIRS epidemic model with delays[J]. Acta Mathematica Scientia, 2006, 26(2): 291-306 [17] 郭树敏. 传染性疾病传播机制与控制的系统研究[D]. 北京: 中国航天第二研究院, 2010. GUO Shumin. System research on transmission mechanism and control of some infectious diseases[D]. Beijing: The Second Academy of China Aerospace, 2010. [18] ZHANG M, MENG R, ALEXANDER V. Including public transportation into a large-scale agent-based model for epidemic prediction and control[C]. Proceedings of the Conference on Summer Computer Simulation. San Diego, CA: Society for Computer Simulation International, 2015. [19] LEFEVRE C. Optimal control of a birth and death epidemic process[J]. Operations Research, 1981, 29(5): 971-982 [20] GÓMEZ S, ARENAS A, BORGE-HOLTHOEFER J, et al. Discrete-time Markov chain approach to contact-based disease spreading in complex networks[J]. Europhysics Letters, 2010, 89(3): 38009_1-38009_6 [21] SUN R. Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence[J]. Computers & Mathematics with Applications, 2010, 60(8): 2286-2291 [22] XIAO D, RUAN S. Global analysis of an epidemic model with nonmonotone incidence rate[J]. Mathematical Biosciences, 2007, 208(2): 419-429 [23] YUAN Z, WANG L. Global stability of epidemiological models with group mixing and nonlinear incidence rates[J]. Nonlinear Analysis: Real World Applications, 2010, 11(2): 995-1004 [24] 魏泽萍. 具有非线性疾病发生率的传染病模型动力学分析[D]. 重庆: 西南大学, 2019. WEI Zeping. Dynamic analysis of the infectious disease models with nonlinear incidence rate[D]. Chongqing: Southwest University, 2019. [25] BORKAR V S, SUNDARESAN R. Asymptotics of the invariant measure in mean field models with jumps[J]. Stochastic Systems, 2012, 2(2): 322-380 [26] YANG Z, ZHOU T. Epidemic spreading in weighted networks: an edge-based mean-field solution[J]. Physical Review E, 2011, 85(5): 056106_1-056106_6 [27] 崔玉美, 陈姗姗, 傅新楚. 几类传染病模型中基本再生数的计算[J]. 复杂系统与复杂性科学, 2017, 14(4): 14-31 CUI Yumei, CHEN Shanshan, FU Xinchu. The thresholds of some epidemic models[J]. Complex System and Complexity Science, 2017, 14(4): 14-31 [28] 王毅. 复杂网络上疾病传播的建模及其动力学[D]. 南京: 东南大学, 2016. WANG Yi. Modeling and dynamics of disease spreading on complex networks[D]. Nanjing: Southeast University, 2016. [29] 董苏雅拉图. 基于平均场理论的信息传播模型研究[D]. 北京: 北京工业大学, 2018. DONG Suyalatu. Studies on information propagation model based on mean field theory[D]. Beijing: Beijing University of Technology, 2018. [30] VAN MIEGHEM P, OMIC J, KOOIJ R. Virus spread in networks[J]. IEEE/ACM Transactions on Networking, 2009, 17(1): 1-14 [31] 蔡超然. 复杂网络上传染病传播动力学及接种动力学研究[D]. 兰州: 兰州大学, 2017. CAI Chaoran. Epidemic spreading dynamics and vaccination dynamics on networks[D]. Lanzhou: Lanzhou University, 2017. [32] WU J T, WEIN L M, PERELSON A S. Optimization of influenza vaccine selection[J]. Operations Research, 2005, 53(3): 456-476 [33] NOWZARI C, PRECIADO V M, PAPPAS G J. Analysis and control of epidemics: a survey of spreading processes on complex networks[J]. IEEE Control Systems Magazine, 2016, 36(1): 26-46 [34] RACHANIOTIS N P, DASAKLIS T K, PAPPIS C P. A deterministic resource scheduling model in epidemic control: a case study[J]. European Journal of Operational Research, 2012, 216(1): 225-231 [35] BRANDEAU M L, ZARIC G S, RICHTER A. Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis[J]. Journal of Health Economics, 2003, 22(4): 575-598 [36] DENG Y, SHEN S, VOROBEYCHIK Y. Optimization methods for decision making in disease prevention and epidemic control[J]. Mathematical Biosciences, 2013, 246(1): 213-227 [37] CHEN H, LI G, ZHANG H, et al. Optimal allocation of resources for suppressing epidemic spreading on networks[J]. Physical Review E, 2017, 96(1): 012321_1-012321_7 [38] LONG E F, NOHDURFT E, SPINLER S. Spatial resource allocation for emerging epidemics: a comparison of greedy, myopic, and dynamic policies[J]. Manufacturing & Service Operations Management, 2018, 20(2): 181-198 [39] ROWTHORN R E, LAXMINARAYAN R, GILLIGAN C A. Optimal control of epidemics in metapopulations[J]. Journal of the Royal Society Interface, 2009, 6(41): 1135-1144 [40] LIU M, ZHANG Z, ZHANG D. A dynamic allocation model for medical resources in the control of influenza diffusion[J]. Journal of Systems Science and Systems Engineering, 2015, 24(3): 276-292 [41] WU J T, RILEY S, LEUNG G M. Spatial considerations for the allocation of pre-pandemic influenza vaccination in the United States[J]. Proceedings Biological Science, 2007, 22(274): 2811-2817 [42] ENAYATI S, ÖZALTIN O Y. Optimal influenza vaccine distribution with equity[J]. European Journal of Operational Research, 2020, 283(2): 714-725 [43] WANG B, HE S. Robust optimization model and algorithm for logistics center location and allocation under uncertain environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(2): 69-74 [44] RAHMAN S, SMITH D K. Use of location-allocation models in health service development planning in developing nations[J]. European Journal of Operational Research, 2000, 123(3): 437-452 [45] METE H O, ZABINSKY Z B. Stochastic optimization of medical supply location and distribution in disaster management[J]. International Journal of Production Economics, 2010, 126(1): 76-84 [46] 缪成, 许维胜, 吴启迪. 大规模应急救援物资运输模型的构建与求解[J]. 系统工程, 2006, 24(11): 6-12 MIU Cheng, XU Weisheng, WU Qidi. A transportation modal and solution of large-scale emergency relief commodities[J]. System Engineering, 2006, 24(11): 6-12 [47] DASAKLIS T K, PAPPIS C P, RACHANIOTIS N P. Epidemics control and logistics operations: a review[J]. International Journal of Production Economics, 2012, 139(2): 393-410 [48] WILSON D P, KAHN J, BLOWER S M. Predicting the epidemiological impact of antiretroviral allocation strategies in KwaZulu-Natal: the effect of the urban-rural divide[J]. Proceedings of the National Academy of Sciences, 2006, 103(38): 14228-14233 [49] 王新平, 王海燕. 多疫区多周期应急物资协同优化调度[J]. 系统工程理论与实践, 2012, 32(2): 283-291 WANG Xinping, WANG Haiyan. Optimal multi-period collaborative scheduling of emergency materials for multiple epidemic areas[J]. Systems Engineering—Theory & Practice, 2012, 32(2): 283-291 [50] LIU M, ZHANG P. Three-level and dynamic optimization model for allocating medical resources based on epidemic diffusion model: LISS 2012[M]. Berlin, Heidelberg: Springer, 2013: 241-246. [51] BÜYÜKTAHTAKIN İ E, DES-BORDES E, KIBIŞ E Y. A new epidemics–logistics model: insights into controlling the Ebola virus disease in West Africa[J]. European Journal of Operational Research, 2018, 265(3): 1046-1063 [52] FUSCO F M, BROUQUI P, IPPOLITO G, et al. Highly infectious diseases in the Mediterranean Sea area: inventory of isolation capabilities and recommendations for appropriate isolation[J]. New Microbes and New Infections, 2018, 26: S65-S73 [53] ZHAO J, MA Z. Fuzzy multi-objective location-routing-inventory problem in recycling infectious medical waste[C]. International Conference on E-business and E-government. Guangzhou: ICEE, 2010. [54] NOLZ P C, ABSI N, FEILLET D. A stochastic inventory routing problem for infectious medical waste collection[J]. Networks, 2014, 63(1): 82-95 [55] SAHA E, RAY P K. Modelling and analysis of inventory management systems in healthcare: a review and reflections[J]. Computers & Industrial Engineering, 2019, 137: 106051_1-106051_16 [56] CONN R, WELCH F J, POPOVICH M L. Management of vaccine inventories as a critical health resource[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(6): 61-65 [57] LIU Y. Mathematical models of vaccine inventory design for a breakout of epidemic disease[J]. Proceedings in Applied Mathematics and Mechanics, 2007, 7(1): 2150013-2150014 [58] ANDERSON R M. The population dynamics of infectious diseases: theory and applications[M]. Boston: Springer, 1982. [59] VILA-PARRISH A R, IVY J S, HE B. Impact of the influenza season on a hospital from a pharmaceutical inventory management perspective[M]//MUSTAFEE N. Operational research for emergency planning in healthcare: volume 1. London: Palgrave Macmillan, 2016. [60] PAUL S, VENKATESWARAN J. Inventory management strategies for mitigating unfolding epidemics[J]. IISE Transactions on Healthcare Systems Engineering, 2018, 8(3): 167-180 [61] BRAUER F. Compartmental models in epidemiology[J]. Mathematical Epidemiology, 2008, 1945: 19-79 [62] FUSCO F M, PURO V, BAKA A, et al. Isolation rooms for highly infectious diseases: an inventory of capabilities in European countries[J]. Journal of Hospital Infection, 2009, 73(1): 15-23 [63] ANPARASAN A A, LEJEUNE M A. Data laboratory for supply chain response models during epidemic outbreaks[J]. Annals of Operations Research, 2018, 270(1): 1-12 [64] PAUL S, VENKATESWARAN J. Impact of drug supply chain on the dynamics of infectious diseases[J]. System Dynamics Review, 2017, 33(3-4): 280-310 [65] PAUL S, VENKATESWARAN J. Designing robust policies under deep uncertainty for mitigating epidemics[J]. Computers & Industrial Engineering, 2020, 140: 106221_1-106221_22 [66] SIHN K H. Reorganizing hospital space: the 1894 plague epidemic in Hong Kong and the germ theory[J]. Korean Journal of Medical History, 2017, 26(1): 59-94 [67] MELTZER M I, ATKINS C Y, SANTIBANEZ S, et al. Estimating the future number of cases in the ebola epidemic—liberia and sierra leone, 2014–2015[J]. Morbidity and Mortality Weekly Report, 2014, 63(S3): 1-14 [68] 谢东晓, 崔宁. 整合医疗资源应对非典危机[J]. 当代医学, 2003, 9(6): 21-22 [69] ZARIC G S, BRANDEAU M L. Resource allocation for epidemic control over short time horizons[J]. Mathematical Biosciences, 2001, 171(1): 33-58 [70] ZARIC G S, BRANDEAU M L. Dynamic resource allocation for epidemic control in multiple populations[J]. IMA Journal of Mathematical Applied in Medicine and Biology, 2002, 19(4): 235-255 [71] KASAIE P, KELTON W D. Simulation optimization for allocation of epidemic-control resources[J]. IIE Transactions on Healthcare Systems Engineering, 2013, 3(2): 78-93 [72] LIU M, XIAO Y. Optimal scheduling of logistical support for medical resource with demand information updating[J]. Mathematical Problems in Engineering, 2015(1): 1-12 [73] LIU M, LIANG J. Dynamic optimization model for allocating medical resources in epidemic controlling[J]. Journal of Industrial Engineering and Management, 2013, 6(1): 73-88 [74] WATKINS N J, NOWZARI C, PAPPAS G J. Robust economic model predictive control of continuous-time epidemic processes[J]. IEEE Transactions on Automatic Control, 2020, 65(3): 1116-1131 [75] NOWZARI C, OGURA M, PRECIADO V M, et al. Optimal resource allocation for containing epidemics on time-varying networks[C]. 2015 49th Asilomar Conference on Signals, Systems and Computers. Pacific Grove CA: IEEE, 2015. [76] ZHANG W, LU S, PEI Y. A geometric programming approach for optimal resource allocation to control epidemic outbreaks in arbitrary networks[J/OL]. (2018-01-15). Communications in Mathematical Biology and Neuroscience, 2018, https://doi.org/10.28919/cmbn/3388. [77] ENYIOHA C, JADBABAIE A, PRECIADO V, et al. Distributed resource allocation for epidemic control[C/OL]. (2015-07). 2015 European Control Conference (ECC). http://10.1109/ECC.2015.7330868. [78] BOYD S, KIM S J, VANDENBERGHE L, et al. A tutorial on geometric programming[J]. Optimization and Engineering, 2007, 8(1): 67-127 [79] WANG S, DE VÉRICOURT F, SUN P. Decentralized resource allocation to control an epidemic: a game theoretic approach[J]. Mathematical Biosciences, 2009, 222(1): 1-12 [80] World Health Organization. Hospital preparedness for epidemics[R]. Geneva: WHO, 2014.
|