[1] 刘银华, 孙芮, 吴欢. 基于车身尺寸数据流潜结构建模的装配质量预测控制[J]. 中国机械工程, 2019, 30(2): 237-243 LIU Yinhua, SUN Rui, WU Huan. Latent structure modeling and predictive quality control based on multi-source data streams in the auto body assembly processes[J]. China Mechanical Engineering, 2019, 30(2): 237-243 [2] YANG K. Improving automotive dimensional quality by using principal component analysis[J]. Quality and Reliability Engineering International, 1996, 12(6): 401-409 [3] HU S J, KOREN Y. Stream-of-variation theory for automotive body assembly[J]. CIRP Annals, 1997, 46(1): 1-6 [4] SONG K, YOLJANG P, CHO H, et al. Partial least square-based model predictive control for large-scale manufacturing processes[J]. IIE Transactions, 2002, 34(10): 881-890 [5] 赫立远. 基于统计过程分析的华晨某款白车身制造尺寸质量改进[D]. 长春: 吉林大学, 2017. HE Liyuan. A brilliance-auto BIW manufacturing dimension quality improvement based on statistical process analysis[D]. Changchun: Jilin University, 2017. [6] KWAK D S, KIM K J. A data mining approach considering missing values for the optimization of semiconductor manufacturing processes[J]. Expert Systems with Applications, 2012, 39(3): 2590-2596 [7] KIM D, KANG P, CHO S, et al. Machine learning based novelty detection for faulty wafer detection in semiconductor manufacturing[J]. Expert Systems with Applications, 2012, 39(4): 4075-4083 [8] RAHMAN A, SMITH D V, TIMMS G. A novel machine learning approach toward quality assessment of sensor data[J]. IEEE Sensors Journal, 2014, 14(4): 1035-1047 [9] MARTIN Ó, PEREDA M, SANTOS J I, et al. Assessment of resistance spot welding quality based on ultrasonic testing and tree-based techniques[J]. Journal of Material Processing Technology, 2014, 214(11): 2478-2487 [10] HEBERT J. Predicting rare failure events using classification trees on large scale manufacturing datawith complex interactions[C]. 2016 IEEE International Conference on Big Data (Big Data), Washington DC: IEEE, 2016. [11] ZHANG D, QIAN L, MAO B, et al. A data-driven design for fault detection of wind turbines using random forests and XGboost[J]. IEEE Access, 2018, 6: 21020-21031 [12] BAHAGHIGHAT M, AKBARI L, XIN Q. A Machine learning-based approach for counting bister cards within drug packages[J]. IEEE Access, 2019, 7: 83785-83796 [13] 刘建文. 基于零件特征及柔性夹具优化的装配偏差分析[D]. 长沙: 湖南大学, 2017. LIU Jianwen. Assembly deviation analysis based on part feature and flexible fixture optimization[D]. Changsha: Hunan University, 2017.
|