[1] WU M C, SUN S H. A project scheduling and staff assignment model considering learning effect[J]. International Journal of Advanced Manufacturing Technology, 2006, 28(11): 1190-1195 [2] 付芳, 周泓. 基于免疫遗传算法和列生成的多项目人力资源调度研究[J]. 中国管理科学, 2010, 18(2): 120-126 FU Fang, ZHOU Hong. Multi-project scheduling problem with human resources based on genetic algorithm and column generation[J]. Chinese Journal of Management Science, 2010, 18(2): 120-126 [3] 肖菁, 吴洲. 基于时间轴的软件多项目任务调度遗传算法[J]. 计算机科学, 2012, 39(12): 133-138 XIAO Jing, WU Zhou. Software multi-project scheduling genetic algorithms based on a time-line model[J]. Computer Science, 2012, 39(12): 133-138 [4] HEIEMERL C, KOLISCH R. Scheduling and staffing multiple projects with a multi-skilled workforce[J]. Operation Research Spectrum, 2010, 32(2): 343-368 [5] MYSZKOWSKI P B, SKOWRONSKI M E, OLECH Ł P, et al. Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem[J]. Soft Computing, 2015, 19: 3599-3619 [6] YANNIBELLI V, AMANDI A. Hybridizing a multi-objective simulated annealing algorithm with a multi-objective evolutionary algorithm to solve a multi-objective project scheduling problem[J]. Expert Systems with Applications, 2013, 40(7): 2421-2434 [7] BARZ C, KOLISCH R. Hierarchical multi-skill resource assignment in the telecommunications industry[J]. Production and Operations Management, 2014, 23(3): 489-503 [8] 陈蓉, 梁昌勇, 叶春森, 等. 考虑随机离职的新产品研发项目组合多技能员工调度模型[J]. 系统工程理论与实践, 2018, 38(1): 164-176 CHEN Rong, LIANG Changyong, YE Chunsen, et al. A multi-skilled staff scheduling model for new product R & D project portfolio under stochastic turnover[J]. Systems Engineering—Theory & Practice, 2018, 38(1): 164-176 [9] 刘振元, 袁慧涛, 周成, 等. 多技能资源时间窗约束下可中断项目调度的分支定界算法[J]. 系统工程理论与实践, 2019, 39(1): 183-199 LIU Zhengyuan, YUAN Huitao, ZHOU Cheng, et al. Branch-and-bound based approach for preemptive project scheduling with time-window constraints on multi-skilled resources[J]. Systems Engineering—Theory & Practice, 2019, 39(1): 183-199 [10] HANNE T, NICKEL S. A multi-objective evolutionary algorithm for scheduling and inspection planning in software development projects[J]. European Journal of Operational Research, 2005, 167(3): 663-678 [11] CHEN J, WANG S. JIANG J P. Method research for dynamic multi-project human resource allocation based on multidimensional model[C]. 2011 2nd International Conference on Management Science and Engineering (MSE 2011). Chengdu: 2011. [12] 陈俊杰, 同淑荣, 聂亚菲, 等. 考虑胜任力水平的研发项目群人力资源调度[J]. 计算机工程与应用, 2019, 55(3): 214-223 CHEN Junjie, TONG Shurong, NIE Yafei, et al. R& D program scheduling and staff assignment with hierarchical levels of competency[J]. Computer Engineering and Applications, 2019, 55(3): 214-223 [13] 伊雅丽. 研发型企业多项目人力资源调度研究——基于蚁群优化的超启发式算法[J]. 工业工程, 2018, 21(4): 104-109 YI Yali. A research on multi-project human resource scheduling in R & D enterprises—a hyper-heuristic algorithm based on ant colony optimization[J]. Industrial Engineering Journal, 2018, 21(4): 104-109 [14] 廉洁, 刘晨光, 殷勇. Seru生产方式下考虑工人异质性的多能工分配模型及算法[J]. 运筹与管理, 2019, 28(2): 85-93 LIAN Jie, LIU Chenguang, YIN Yong. Mathematical model and algorithm for multi-skilled worker assignment problem in seru production systems considering the worker heterogeneity[J]. Operations Research & Management Science, 2019, 28(2): 85-93 [15] 廖婷婷, 徐哲, 李明. 软件开发项目多技能人力资源均衡调度模型[J]. 工业工程, 2015, 18(3): 72-77 LIAO Tingting, XU Zhe, LI Ming. A research on multi-skill human resource leveling scheduling model of software development project[J]. Industrial Engineering Journal, 2015, 18(3): 72-77 [16] VILA GONCALVES FILHO E, TIBERTI A J. A group genetic algorithm for the machine cell formation problem[J]. International Journal of Production Economics, 2006, 102(1): 1-21 [17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 [18] FALKENAUER E. Genetic algorithms for grouping problems[M]. New York: Wiley, 1998. [19] ZITZLER E, THIELE L. Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271
|