[1] WANG Zhijian, WANG Junyuan, ZHAO Zhifang, et al. A novel method for multi-fault feature extraction of a gearbox under strong background noise[J]. Entropy, 2017, 20(1): 10 [2] GUO T, DENG Z. An improved EMD method based on the multi-objective optimization and its application to fault feature extraction of rolling bearing[J]. Applied Acoustics, 2017, 127: 46-62 [3] MADHUSUDANA C K, KUMAR H, NARENDRANATH S. Fault diagnosis of face milling tool using decision tree and sound signal[J]. Materials Today Proceedings, 2018, 5(5): 12035-12044 [4] LI J, LI M, ZHANG J. Rolling bearing fault diagnosis based on time-delayed feedback monostable stochastic resonance and adaptive minimum entropy deconvolution[J]. Journal of Sound Vibration, 2017, 401: 139-151 [5] NARENDIRANATH B T, ARAVIND A, RAKESH A, et al. Automatic fault classification for journal bearings using ANN and DNN[J]. Archives of Acoustics, 2018, 43(4): 727-738 [6] DHAMANDE L S, CHAUDHARI M B. Compound gear-bearing fault feature extraction using statistical features based on time-frequency method[J]. Measurement, 2018, 125: 63-77 [7] HAMED H, AHMAD F. Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS[J]. The Institution of Engineering and Technology., 2019, 13(5): 662-559 [8] LAHMIRI S. Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains[J]. Healthcare Technology Letters, 2014, 1(3): 104-109 [9] CHINE W, MELLIT A, BOUHEDIR R. FPGA-Based implementation of an intelligent fault diagnosis method for photovoltaic arrays[M/OL]. (2018-03-13). https://link.springer.com/chapter/10.1007%2F978-3-319-73192-6_25. [10] GREZMAK J, WANG P, SUN C, et al. Explainable convolutional neural network for gearbox fault diagnosis[J]. Procedia CIRP, 2019, 80: 476-481 [11] 李从志, 郑近德, 潘海洋, 等. 基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2019, 30(14): 1713-1719, 1726 LI Congzhi, ZHENG Jinde, PAN Haiyang, et al. Fault diagnosis method of rolling bearing based on fine composite multiscale dispersion entropy and support vector machine[J]. China Mechanical Engineering, 2019, 30(14): 1713-1719, 1726 [12] 戴邵武, 陈强强, 戴洪德, 等. 基于平滑先验分析和模糊熵的滚动轴承故障诊断[J]. 航空动力学报, 2019, 34(10): 2218-2226 DAI Shaowu, CHEN Qiangqiang, DAI Hongde, et al. Rolling bearing fault diagnosis based on smoothness priors approach and fuzzy entropy[J]. Journal of Aeronautical Power, 2019, 34(10): 2218-2226 [13] GU X D, DENG F, GAO X, et al. An improved sensor fault diagnosis scheme based on TA-LSSVM and ECOC-SVM[J]. Journal of Systems Science & Complexity, 2018, 31(2): 372-384 [14] 朱文博, 王小敏. 基于组合决策树的无绝缘轨道电路故障诊断方法研究[J]. 铁道学报, 2018, 40(7): 74-79 ZHU Wenbo, WANG Xiaomin. Research on fault diagnosis of railway jointless track circuit method on combinatorial decision tree[J]. Journal of the China railways Society, 2018, 40(7): 74-79 [15] 夏丽莎, 吕文元. 基于随机RF的集成SVM故障诊断改进算法[J]. 工业工程与管理, 2019, 24(3): 85-90 XIA Lisa, LYU Wenyuan. Random RF and ensemble SVMs based fault diagnosis method[J]. Industrial Engineering and Management, 2019, 24(3): 85-90 [16] 唐晓红, 胡俊锋, 熊国良, 等. 自适应非局部均值及在轴承故障检测中的应用[J]. 振动. 测试与诊断, 2019, 39(1): 67-73, 227 TANG Xiaohong, HU Junfeng, XIONG Guoliang, et al. Adaptive non-local means with applications in fault detection of rolling bearings[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(1): 67-73, 227 [17] 李鑫, 崔昊杨, 许永鹏, 等. 电力设备IR图像特征提取及故障诊断方法研究[J]. 激光与红外, 2018, 48(5): 125-130 LI Xin, CUI Haoyang, XU Yongpeng, et al. Research on infrared image feature extraction and fault diagnosis of power equipment[J]. Laser and Infrared, 2018, 48(5): 125-130 [18] HUO Z, ZHANG Y, FRANCQ P, et al. Incipient fault diagnosis of roller bearing using optimized wavelet transform based multi-speed vibration signatures[J]. IEEE Access, 2017, 5: 19442-19456 [19] 李嫄源, 袁梅, 王瑶, 等. SVM与PSO相结合的电机轴承故障诊断[J]. 重庆大学学报(自然科学版), 2018, 41(1): 99-107 LI Yuanyuan, YUAN Mei, WANG Yao, et al. Fault diagnosis of motor bearing based on SVM and PSO[J]. Journal of Chongqing University(Natural Science Edition), 2018, 41(1): 99-107 [20] 姚亚夫, 邢留涛. 决策树C4.5连续属性分割阈值算法改进及其应用[J]. 中南大学学报(自然科学版), 2011, 42(12): 3772-3776 YAO Yafu, XING Liutao. Improvement of C4.5 decision tree continuous attributes segmentation threshold algorithm and its application[J]. Journal of Central South University (Natural Science Edition), 2011, 42(12): 3772-3776 [21] KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C/OL]. (2002-08-06). https://ieeexplore.ieee.org/document/637339. [22] LOPARO K A. Bearings vibration data sets, case Western Reserve University [EB/OL]. (2014-01-06). http://csegroups.case.edu/Bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website.
|