[1] SHI Z, LIU Z, LEE J. An auto-associative residual based approach for railway point system fault detection and diagnosis[J]. Measurement, 2018, 119: 246-258 [2] FAN Y X, LI Z, PEI J J, et al. Applying systems thinking approach to accident analysis in China: case study of "7.23" Yong-Tai-Wen high-speed train accident[J]. Safety Science, 2015, 76: 190-201 [3] BARKHORDARI P, GALEAZZI R. Statistical model of railway's turnout based on train induced vibrations[J]. IFAC-Papers Online, 2018, 51(24): 1278-1284 [4] 董昱, 陈星. 基于粗糙集和模糊认知图的ZPW-2000轨道电路故障诊断[J]. 铁道学报, 2018, 40(6): 83-89 DONG Yu, CHEN Xing. Intelligent fault diagnosis for ZPW-2000 track circuit based on rough set theory and fuzzy cognitive map[J]. Journal of the China Railway Society, 2018, 40(6): 83-89 [5] 胡永杰, 吴连庆, 杨力. 继电编码ZPW-2000A移频报警电路原理及故障分析[J]. 铁路通信信号工程技术, 2019(7): 79-82 HU Yongjie, WU Lianqing, YANG Li. Principle and fault analysis of frequency shift alarm circuit of relay code ZPW-2000A[J]. Railway Signaling & Engineering, 2019(7): 79-82 [6] 张振海, 蔺苗苗, 党建武. 基于粗糙集和图论的ZPW-2000A轨道电路故障诊断模型[J]. 计算机应用与软件, 2019, 36(9): 88-92 ZHANG Zhenhai, LIN Miaomiao, DANG Jianwu. Fault diagnosis model of ZPW-2000A non-insulated track circuit based on rough set and graph theory[J]. Computer Applications and Software, 2019, 36(9): 88-92 [7] 张超, 郑晓琼, 王娣, 等. 基于遗传算法进化小波神经网络的电力变压器故障诊断研究[J]. 自动化与仪器仪表, 2019(10): 136-139 ZHANG Chao, ZHENG Xiaoqiong, WANG Di, et al. Research on power transformer fault diagnosis based on genetic algorithms evolutionary wavelet neural network[J]. Automation & Instrumentation, 2019(10): 136-139 [8] YAN X A, JIA M P. A novel optimized SVM classification algorithm with multi-domain feature and its application to fault diagnosis of rolling bearing[J]. Neurocomputing, 2018, 313: 47-64 [9] LI C, SANCHEZ R V, ZURITA G, et al. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 283-293 [10] HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2018, 53: 42-50 [11] 颜波, 张磊, 褚学宁. 基于卷积神经网络的用户感知评估建模[J]. 上海交通大学学报, 2019, 53(7): 844-851 YAN Bo, ZHANG Lei, CHU Xuening. User experience evaluation modeling based on convolutional neural network[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 844-851 [12] ZHANG Y J, QIN N, HUANG D Q, et al. Fault diagnosis of high-speed train bogie based on deep neural network[J]. IFAC-Papers Online, 2019, 52(24): 135-139 [13] ZHU X B, CAI Z, WU J J, et al. Convolutional neural network based combustion mode classification for condition monitoring in the supersonic combustor[J]. Acta Astronautica, 2019, 159: 349-357 [14] 赵冰, 代明睿, 李平, 等. 基于深度学习的铁路关键部件缺陷检测研究[J]. 铁道学报, 2019, 41(8): 67-73 ZHAO Bing, DAI Mingrui, LI Ping, et al. Research on defect detection of railway key components based on deep learning[J]. Journal of the China Railway Society, 2019, 41(8): 67-73 [15] 周雯, 史天运, 李平, 等. 基于卷积神经网络的动车组行车安全图像缺陷检测与分割[J]. 铁道学报, 2019, 41(10): 76-83 ZHOU Wen, SHI Tianyun, LI Ping, et al. Defect detection and segmentation of operation safety image of EMU based on convolutional neural network[J]. Journal of the China Railway Society, 2019, 41(10): 76-83 [16] WU C Z, JIANG P C, DING C, et al. Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53-61 [17] LIANG P F, DENG C, WU J, et al. Compound fault diagnosis of gearboxes via multi-label convolutional neural network and wavelet transform[J]. Computers in Industry, 2019, 113: 10312 [18] 肖彩霞, 邓迎宏. ZPW-2000R轨道电路调谐区的设计与实现[J]. 铁道通信信号, 2012, 48(3): 12-14 [19] ZHAO J, GAO Y, YANG Z, et al. Truck traffic speed prediction under nonrecurrent congestion: based on optimized deep learning algorithms and GPS data[J]. IEEE Access, 2019, 99: 1-1 [20] KINGMA D P, BA J. Adam: a method for stochastic optimizatio[J]. CoRR, 2015, 1412: 6980 [21] LI J, YAO X F, WANG X D, et al. Multiscale local features learning based on BP neural network for rolling bearing intelligent fault diagnosis[J/OL]. (2020-03-01). https://doi.org/10.1016/j.measurement.2019.107419.
|