[1] BAYKASOLU A, MADENOLU FS, HAMZADAYH A. Greedy randomized adaptive search for dynamic flexible job-shop scheduling[J]. Journal of Manufacturing Systems, 2020, 56: 425-451 [2] CHEN C, JI Z, WANG Y. NSGA-II applied to dynamic flexible job shop scheduling problems with machine breakdown[J]. Modern Physics Letters B, 2018, 32(34-36): 1840111 [3] NIE L, WANG X, BAI Y. An improved genetic algorithm for low carbon dynamic scheduling in a discrete manufacturing workshop[J/OL]. Journal of Physics Conference Series, 2021, 1820 (1): (2021-05-21). https://iopscience.iop.org/article/10.1088/1742-6596/1820/1/012111. [4] MOU J, GAO L, GUO Q, et al. A hybrid heuristic algorithm for flowshop inverse scheduling problem under a dynamic environment[J]. Cluster Computing, 2017, 20(1): 439-453 [5] ZHANG H, BORUT B, LI X, et al. Advanced metaheuristic method for decision-making in a dynamic job shop scheduling environment[J]. Mathematics, 2021, 9(8): 909 [6] 尤一琛, 王艳, 纪志成. 基于随机机器故障的柔性作业车间动态调度[J]. 江苏大学学报 (自然科学版) , 2021, 42(6): 648-654 YOU Yichen, WANG Yan, JI Zhicheng. Flexible job-shop dynamic scheduling based on random machine fault[J]. Journal of Jiangsu University (Natural Science Edition) , 2021, 42(6): 648-654 [7] FARAMARZI A, MOHAMMAD H, STEPHENS B, et al. Equilibrium optimizer: a novel optimization algorithm[J]. Knowledge-Based Systems, 2020, 191 (C): (2020-03-05). https://doi.org/10.1016/j.knosys.2019.105190. [8] ZHOU Y, WANG R, LUO Q. Elite opposition-based flower pollination algorithm[J]. Neurocomputing, 2016, 188: 294-310 [9] WU X, BAI W, XIE Y, et al. A hybrid algorithm of particle swarm optimization, metropolis criterion and RTS smoother for path planning of UAVs[J]. Applied Soft Computing, 2018, 73: 735-747 [10] 王玉芳, 马铭阳, 葛嘉荣, 等. 基于改进人工蜂群算法的柔性作业车间调度[J]. 组合机床与自动化加工技术, 2021(3): 159-163 WANG Yufang, MA Mingyang, GE Jiarong, et al. Flexible job shop scheduling based on improved artificial bee colony algorithm[J]. Combined Machine Tool and Automatic Machining Technology, 2021(3): 159-163 [11] 陈嘉琪. 多点多父辈正交交叉遗传算法解决背包问题[D]. 北京: 北京邮电大学, 2020. CHEN Jiaqi. An orthogonal genetic algorithm with multi-point multi-parent crossover for knapsack problem[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. [12] 林晓杰, 索继东. 基于自适应粒子群优化的粒子滤波跟踪算法[J]. 现代电子技术, 2020, 43(17): 11-15 LIN Xiaojie, SUO Jidong. Particle filtering tracking algorithm based on adaptive particle swarm optimization[J]. Modern Electronic Technology, 2020, 43(17): 11-15 [13] 桂林, 李新宇, 高亮. 作业车间调度问题的新型邻域结构[J]. 华中科技大学学报 (自然科学版) , 2021, 49(7): 103-106 GUI Lin, LI Xinyu, GAO Liang. New neighborhood structure for job shop scheduling problem[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2021, 49(7): 103-106 [14] PAOLO B. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183 [15] MOHAMAD Z, JEEVAN K, HUANG CJ, et al. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization[J]. Applied Soft Computing Journal, 2018, 70: 680-700 [16] NADIMI-SHAHRAKI MOHAMMAD S, TAGHIAN S, MIRJALILI S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems With Applications, 2021, 166: 113917.1-113917.25 [17] YUAN Y, XU H. Multiobjective flexible job shop scheduling using memetic algorithms[J]. IEEE Transactionson Automation Science and Engineering, 2015, 12(1): 336-353
|