[1] DAMODARAN P, DIYADAWAGAMAGE D A, GHRAYEB O, et al. A particle swarm optimization algorithm for minimizing makespan of nonidentical parallel batch processing machines[J]. International Journal of Advanced Manufacturing Technology, 2012, 58(9-12): 1131-1140 [2] 包博, 李体方, 张搏. 基于遗传算法的装备维修作业车间并行调度模型[J]. 装甲兵工程学院学报, 2017, 31(6): 34-38 BAO Bo, LI Tifang, ZHANG Bo. Equipment maintenance job shop parallel scheduling model based on genetic algorithm[J]. Journal of Academy of Armored Force Engineering, 2017, 31(6): 34-38 [3] IKURA Y, GIMPLE M. Efficient scheduling algorithms for a single batch processing machine[J]. Operations Research Letters, 1986, 5(2): 61-65 [4] STAWOWY A, DUDA J. Coordinated production planning and scheduling problem in a foundry[J]. Archives of Foundry Engineering, 2017, 17(3): 133-138 [5] 胡常伟, 陈新度, 陈庆新, 等. 含不一致任务重量的同型熔炼炉批调度优化[J]. 工业工程, 2014, 17(3): 73-78, 85 HU Changwei, CHEN Xindu, CHEN Qingxin, et al. Optimization for scheduling identical parallel melting furnaces with non-identical job weights[J]. Industrial Engineering Journal, 2014, 17(3): 73-78, 85 [6] 刘晓平, 徐本柱, 彭军, 等. 工件工序可并行的作业车间调度模型与求解[J]. 计算机辅助设计与图形学学报, 2012, 24(1): 120-127 LIU Xiaoping, XU Benzhu, PENG Jun, et al. Model and solution of job-shop scheduling for parallel processes[J]. Journal of Computer-Aided Design & Computer Graphics, 2012, 24(1): 120-127 [7] 黄锦钿, 刘建军, 陈庆新, 等. 不相容工件族柔性流水车间批调度算法[J]. 机械设计与制造, 2016(6): 75-77 HUANG Jindian, LIU Jianjun, CHEN Qingxin, et al. Batch optimization algorithm for flexible flow-shop with incompatible job families[J]. Machinery Design & Manufacture, 2016(6): 75-77 [8] 徐本柱, 费晓璐, 章兴玲. 柔性作业车间批量划分与并行调度优化[J]. 计算机集成制造系统, 2016, 22(8): 1953-1964 XU Benzhu, FEI Xiaolu, ZHANG Xingling. Batch division and parallel scheduling optimization of flexible job shop[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1953-1964 [9] 王万良, 范丽霞, 徐新黎, 等. 基于混合差分进化算法的并行机批处理调度问题研究[J]. 机电工程, 2012, 29(2): 7-12 WANG Wanliang, FAN Lixia, XU Xinli, et al. New hybrid differential evolution for parallel machines batch scheduling[J]. Journal of Mechanical & Electrical Engineering, 2012, 29(2): 7-12 [10] LIU L L, NG C T, CHENG T C E. On the complexity of bi-criteria scheduling on a single batch processing machine[J]. Journal of Scheduling, 2010, 13(6): 629-638 [11] GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 76(2): 60-68 [12] MAHDAVI M, FESANGHARY M, DAMANGIR E. An improved harmony search algorithm for solving optimization problems[J]. Applied Mathematics and Computation, 2007, 188(2): 1567-1579 [13] OMRAN M G H, MAHDAVI M. Global-best harmony search[J]. Applied Mathematics and Computation, 2007, 198(2): 643-656 [14] ALOULOU M A, BOUZAIENE A, DRIDI N, et al. A bicriteria two-machine flow-shop serial-batching scheduling problem with bounded batch size[J]. Journal of Scheduling, 2014, 17(1): 17-29 [15] UZSOY R. Scheduling a single batch processing machine with non-identical job sizes[J]. International Journal of Production Research, 1994, 32(7): 1615-1635 [16] KELLEGÖZ T, TOKLU B, WILSON J. Comparing efficiencies of genetic crossover operators for one machine total weighted tardiness problem[J]. Applied Mathematics and Computation, 2008, 199(2): 590-598 [17] CHO H M, BAE S J, KIM J, et al. Bi-objective scheduling for reentrant hybrid flow shop using Pareto genetic algorithm[J]. Computers & Industrial Engineering, 2011, 61(3): 529-541 [18] 陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2): 55-61 CHEN Fubin, LI Zhongxue, YANG Xijuan. Multi-objective flexible job shop scheduling based on improved NSGA2 algorithm[J]. Industrial Engineering Journal, 2018, 21(2): 55-61
|