[1] LIU Jianjun, CHEN Qingxin, MAO Ning, et al. Bi-objective dynamic control of batch processor with non-identical jobs in mould manufacturing [J]. International Journal of Production Research, 2013, 51(6): 1820-1835. [2] 刘建军, 陈庆新, 毛 宁. 基于滚动调度的模具热处理车间负荷控制算法[J]. 机械工程学报, 2010, 46(20): 125-133. LIU Jianjun, CHEN Qingxin, MAO Ning. Rolling-scheduling-based workload control for mould heat-treatment shop floor [J]. Jourrnal of Mechanical Engineering, 2010, 46(20): 125-133. [3] HUANG J, LIU J, CHEN Q, et al. Minimizing makespan in a flow shop with two batch machines[C]//Proceedings of the 22nd International Conference on Industrial Engineering and Engineering Management 2015, Atlantis Press, 2016: 283-292. [4] 黄锦钿, 刘建军, 陈庆新, 等. 两机flow-shop类型模具热处理车间批调度算法[J]. 计算机集成制造系统, 2014, 20(7): 1665-1674. HUANG Jindian, LIU Jianjun, CHEN Qingxin, et al. Batch optimization algorithm for mould heat-treatment flow-shop with two machines [J]. Computer Integrated Manufacturing Systems, 2014, 20(7): 1665-1674. [5] 刘建军, 陈庆新, 毛宁, 等. 事件驱动的并行多机模具热处理生产调度[J]. 计算机集成制造系统, 2015, 21(4): 1013-1022. LIU Jianjun, CHEN Qingxin, Mao Ning, et al. Event-driven mould heat-treatment production scheduling with parallel batch processors [J]. Computer Integrated Manufacturing Systems, 2015, 21(4): 1013-1022. [6] 林刚, 刘建军, 陈庆新, 等. 可重入流水车间类型模具热处理生产动态批调度[J]. 计算机集成制造系统, 2016, 22(4): 1046-1058. LIN Gang, LIU Jianjun, CHEN Qingxin, et al. Dynamic batch scheduling for re-entrant mould heat-treatment flow-shop [J]. Computer Integrated Manufacturing Systems, 2016, 22(4): 1046-1058. [7] 包耳, 田绍洁, 王华琪. 热处理加热保温时间的 369 法则[J]. 热处理技术与装备, 2008, 29(2): 53-55. BAO Er, TIAN Shaojie, WANG Huaqi. The formula 369 of heating and heat preservation about heat treatment [J]. Heat Treatment Technology and Equipment, 2008, 29(2): 53-55. [8] MELOUK S, DAMODARAN P, CHANG P Y. Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing[J]. International Journal of Production Economics, 2004, 87(2): 141-147. [9] LIAO Chingjong, LIAO Liman, Improved MILP models for two-machine flowshop with batch processing machines[J]. Mathematical and Computer Modelling, 2008, 48(7): 1254-1264. [10] CABO M, POSSANI E, POTTS C N, et al. Split-merge: using exponential neighborhood search for scheduling a batching machine[J]. Computers & Operations Research, 2015, 63(4): 125-135. [11] HADDAD H, GHANBARI P, MOGHADDAM A. A new mathematical model for single machine batch scheduling problem for minimizing maximum lateness with deteriorating jobs[J]. International Journal of Industrial Engineering Computations, 2012, 3(2): 253-264. [12] TANG L, LIU P. Minimizing makespan in a two-machine flowshop scheduling with batching and release time [J]. Mathematical and Computer Modelling, 2009: 49(5): 1071-1077. [13] PEI J, LIU X, FAN W, et al. Minimizing the makespan for a serial-batching scheduling problem with arbitrary machine breakdown and dynamic job arrival[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9): 1-17. [14] LU L, ZHANG L, WAN L. Integrated production and delivery scheduling on a serial batch machine to minimize the makespan[J]. Theoretical Computer Science, 2015, 572(3): 50-57. |