[1] 王凌, 王晶晶, 吴楚格. 绿色车间调度优化研究进展[J]. 控制与决策, 2018, 33(3): 385-391 WANG Ling, WANG Jingjing, WU Chuge. Advances in green shop scheduling and optimization[J]. Control and Decision, 2018, 33(3): 385-391 [2] PIROOZFARD H, WONG K Y, WONG W P. Minimizing total carbon footprint and total late work criterion in flexible job shop scheduling by using an improved multi-objective genetic algorithm[J]. Resources Conservation and Recycling, 2018, 128(1): 267-283 [3] SENG D W, LI J W, FANG X J, et al. Low-carbon flexible job-shop scheduling based on improved nondominated sorting genetic algorithm-II[J]. International Journal of Simulation Modelling, 2018, 17(4): 712-723 [4] LUO S, ZHANG L, FAN Y. Energy-efficient scheduling for multi-objective flexible job shops with variable processing speeds by grey wolf optimization[J]. Journal of Cleaner Production, 2019, 234(10): 1365-1384 [5] CALDEIRA R H, GNANAVELBABU A, VAIDYANATHAN T. An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption[J]. Computers & Industrial Engineering, 2020, 149: 106863 [6] 李益兵, 黄炜星, 吴锐. 基于改进人工蜂群算法的多目标绿色柔性作业车间调度研究[J]. 中国机械工程, 2020, 31(11): 1344-1350 LI Yibing, HUANG Weixing, WU Rui. Research on multi-objective green flexible job-shop scheduling based on improved ABC algorithm[J]. China Mechanical Engineering, 2020, 31(11): 1344-1350 [7] SANG Y, TAN J. Many-objective flexible job shop scheduling problem with green consideration[J]. Energies, 2022, 15(5): 1884 [8] 张洁, 高亮, 秦威, 等. 大数据驱动的智能车间运行分析与决策方法体系[J]. 计算机集成制造系统, 2016, 22(5): 1220-1228 ZHANG Jie, GAO Liang, QIN Wei, et al. Big-data-driven operational analysis and decision-making methodology in intelligent workshop[J]. Computer Integrated Manufacturing Systems, 2016, 22(5): 1220-1228 [9] HAN B A, YANG J J. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020, 8(10): 186474-186495 [10] HAN B A, YANG J J. A deep reinforcement learning based solution for flexible job shop scheduling problem[J]. International Journal of Simulation Modelling, 2021, 20(2): 375-386 [11] PARK J, CHUN J, KIM S H, et al. Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning[J]. International Journal of Production Research, 2021, 59(11): 3360-3377 [12] ZHOU T, TANG D, ZHU H, et al. Reinforcement learning with composite rewards for production scheduling in a smart factory[J]. IEEE Access, 2021, 9(1): 752-766 [13] CHANG J, YU D, HU Y, et al. Deep reinforcement learning for dynamic flexible job shop scheduling with random job arrival[J]. Processes, 2022, 10(4): 760 [14] ZHANG M, LU Y, HU Y, et al. Dynamic scheduling method for job-shop manufacturing systems by deep reinforcement learning with proximal policy optimization[J]. Sustainability, 2022, 14(9): 5177 [15] WANG H, JIANG Z, WANG Y, et al. A two-stage optimization method for energy-saving flexible job-shop scheduling based on energy dynamic characterization[J]. Journal of Cleaner Production, 2018, 188(7): 575-588 [16] 屈新怀, 纪飞, 孟冠军, 等. 超启发式遗传算法柔性作业车间绿色调度问题研究[J]. 机电工程, 2022, 39(2): 255-261 QU Xinhuai, JI Fei, MENG Guanjun, et al. Green scheduling of flexible job-shop based on hyper heuristic genetic algorithm[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(2): 255-261 [17] ZHANG Z, WU L, PENG T, et al. An improved scheduling approach for minimizing total energy consumption and makespan in a flexible job shop environment[J]. Sustainability, 2019, 11(1): 179 [18] 张国辉, 党世杰. 遗传算法求解低碳柔性车间生产调度问题[J]. 组合机床与自动化加工技术, 2016(11): 141-144 ZHANG Guohui, DANG Shijie. Genetic algorithm for solving flexible job shop scheduling problem with low carbon[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2016(11): 141-144 [19] 杨立熙, 王秀萍. 考虑低碳的柔性作业车间调度问题研究[J]. 组合机床与自动化加工技术, 2018(6): 168-176 YANG Lixi, WANG Xiuping. Research on flexible job shop scheduling problem considering low carbon[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(6): 168-176 [20] 张朝阳. 基于能耗优化的柔性作业车间调度方法研究[D]. 洛阳: 河南科技大学, 2022.
|