Industrial Engineering Journal ›› 2024, Vol. 27 ›› Issue (2): 27-36,66.doi: 10.3969/j.issn.1007-7375.230233
Previous Articles Next Articles
GAO Yiping, WANG Hao, LI Xinyu, GAO Liang
Received:
2023-12-06
Online:
2024-04-30
Published:
2024-04-29
CLC Number:
GAO Yiping, WANG Hao, LI Xinyu, GAO Liang. A Review on Surface Defect Detection Based on Deep Intelligent Vision[J]. Industrial Engineering Journal, 2024, 27(2): 27-36,66.
[1] 周东华, 魏慕恒, 司小胜. 工业过程异常检测、寿命预测与维修决策的研究进展[J]. 自动化学报, 2013, 39(6): 711-722 ZHOU Donghua, WEI Muheng, SI Xiaosheng. A survey on anomaly detection, life prediction and maintenance decision for industrial processes[J]. Acta Automatica Sinica, 2013, 39(6): 711-722 [2] 黄聪, 农英雄, 张毅. 基于高斯受限玻尔兹曼机的工业产品质量智能异常检测[J]. 工业工程, 2022, 25(6): 152-159 HUANG Cong, NONG Yingxiong, ZHANG Yi. Intelligent Anomaly detection for industrial product quality inspection based on Gaussian restricted Boltzmann machine[J]. Industrial Engineering Journal, 2022, 25(6): 152-159 [3] 姚池, 潘尔顺. 基于两视图半监督学习的产品质量问题识别方法[J]. 工业工程, 2023, 26(3): 86-94 YAO Chi, PAN Ershun. Identification method of product quality problems based on two-view semi-supervised learning[J]. Industrial Engineering Journal, 2023, 26(3): 86-94 [4] 刘飏, 高文科, 张志胜, 等. 基于多尺度估计理论的晶圆减薄工艺方差变化检测方法[J]. 工业工程, 2018, 21(3): 75-81 LIU Yang, GAO Wenke, ZHANG Zhisheng, et al. A study of the standard deviation change in the wafer thinning process based on the multiscale estimation theory[J]. Industrial Engineering Journal, 2018, 21(3): 75-81 [5] 叶祎旎, 李艳婷. 基于CNN-集成学习的多风电机组故障诊断[J]. 工业工程, 2022, 25(1): 136-143 YE Yini, LI Yanting. Fault diagnosis of multi wind turbine based on CNN-ensemble learning[J]. Industrial Engineering Journal, 2022, 25(1): 136-143 [6] GAO Y, GAO L, LI X, et al. A multilevel information fusion-based deep learning method for vision-based defect recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 3980-3991 [7] GAO Y, LI X, WANG X V, et al. A review on recent advances in vision-based defect recognition towards industrial intelligence[J]. Journal of Manufacturing Systems, 2022, 62: 753-766 [8] HE Y, SONG K, MENG Q, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504 [9] GAO Y, GAO L, LI X. A hierarchical training-convolutional neural network with feature alignment for steel surface defect recognition[J]. Robotics and Computer-Integrated Manufacturing, 2023, 81: 102507 [10] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 [11] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[DB/OL]. (2020-10-22). https://doi.org/10.48550/arXiv.2010.119290. [12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C/OL]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE (2016-12-12) . https://ieeexplore.ieee.org/document/7780459. [13] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[DB/OL]. (2016-02-24) . https://doi.org/10.48550/arXiv.1602.07360. [14] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[DB/OL]. (2021-03-25) . https://doi.org/10.48550/arXiv.2103.14030. [15] CHEON S, LEE H, KIM C O, et al. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class[J]. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 163-170 [16] WEI Y, WANG H. Mixed-type wafer defect recognition with multi-scale information fusion transformer[J]. IEEE Transactions on Semiconductor Manufacturing, 2022, 35(2): 341-352 [17] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[DB/OL]. (2014-06-0) . https://arxiv.org/abs/1406.2661. [18] HE Y, SONG K, DONG H, et al. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network[J]. Optics and Lasers in Engineering, 2019(122): 294-302 [19] HU G, HUANG J, HUANG X, et al. Unsupervised fabric defect detection based on a deep convolutional generative adversarial network[J]. Textile Research Journal, 2020, 90(3-4): 247-270 [20] RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[DB/OL]. (2016-01-07). https://doi.org/10.48550/arXiv.1511.06434. [21] NIU S, LI B, WANG X, et al. Defect image sample generation with GAN for improving defect Recognition[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(3): 1611-1622 [22] YANG J, FU G, ZHU W, et al. A Deep learning-based surface defect inspection system using multiscale and channel-compressed features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 8032-8042 [23] LIU Z, YANG B, DUAN G, et al. Visual defect inspection of metal part surface via deformable convolution and concatenate feature pyramid neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12): 9681-9694 [24] ZHANG D, SONG K, WANG Q, et al. Two deep learning networks for rail surface defect inspection of limited samples with line-level label[J]. IEEE Transactions on Industrial Informatics, 2021, 17(10): 6731-6741 [25] LI Y, YANG M, HUA J, et al. A channel attention-based method for micro-motor armature surface defect detection[J]. IEEE Sensors Journal, 2022, 22(9): 8672-8684 [26] ZHU Y, XIE L, YIN M, et al. Convolution with rotation invariance for online detection of tiny defects on Magnetic tile surface[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5021412 (2023-07-14). https://ieeexplore.ieee.org/document/10184057. [27] WANG Y, HUANG J, WANG Y, et al. A CNN-based adaptive surface monitoring system for fused deposition modeling[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(5): 2287-2296 [28] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[DB/OL]. (2017-04-17). https://doi.org/10.48550/arXiv.1704.04861. [29] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C/OL]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE (2018-12-16) . https://ieeexplore.ieee.org/abstract/document/8578572. [30] QIAN S, NING C, HU Y. MobileNetV3 for image classification[C/OL]//2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE) . New York: IEEE (2021-04-02) . https://ieeexplore.ieee.org/document/9389905. [31] MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[DB/OL]. (2021-10-05) . https://doi.org/10.48550/arXiv.2110.02178. [32] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C/OL]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE (2018-12-16). https://ieeexplore.ieee.org/abstract/document/8578814. [33] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[DB/OL]. (2015-03-09) . https://doi.org/10.48550/arXiv.1503.02531. [34] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[DB/OL]. (2015-12-08). https://doi.org/10.1007/978-3-319-46448-0_2. [35] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C/OL]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE (2016-12-12). https://ieeexplore.ieee.org/document/7780460. [36] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C/OL]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE (2017-11-09) . https://ieeexplore.ieee.org/document/8100173. [37] REDMON J, FARHADI A. YOLOv3: an incremental improvement[DB/OL]. (2018-04-08). https://doi.org/10.48550/arXiv.1804.027678. [38] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C/OL]//European Conference on Computer Vision. Cham: Springer International Publishing (2020-11-03). https://doi.org/10.48550/arXiv.2005.12872. [39] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C/OL]//Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE (2017-11-25). https://ieeexplore.ieee.org/document/8237586. [40] TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C/OL]//Proceedings of the IEEE/CVF International Conference on Computer Vision. New York: IEEE (2020-02-27). https://ieeexplore.ieee.org/document/9010746. [41] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149 [42] LIU Y, GAO H, GUO L, et al. A data-flow oriented deep ensemble learning method for real-time surface defect inspection[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4681-4691 [43] BLOCK S B, DA SILVA R D, DORINI L B, et al. Inspection of imprint defects in stamped metal surfaces using deep learning and tracking[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4498-4507 [44] WU Y, CHEN P, QIN Y, et al. Automatic railroad track components inspection using hybrid deep learning framework[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5011415 (2023-04-10) . https://ieeexplore.ieee.org/document/10098120. [45] LIU Z, MAO H, WU C Y, et al. A ConvNet for the 2020s[C/OL]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE (2022-12-27) . https://ieeexplore.ieee.org/document/9879745. [46] CHENG X, YU J. RetinaNet with difference channel attention and adaptively spatial feature fusion for steel surface defect detection[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2503911 (2020-11-25). https://ieeexplore.ieee.org/document/9270024. [47] ZENG N, WU P, WANG Z, et al. A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3507014 (2022-02-24). https://ieeexplore.ieee.org/abstract/document/9720996. [48] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C/OL]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE (2017-11-09). https://ieeexplore.ieee.org/document/8099589. [49] YEUNG C C, LAM K M. Efficient fused-attention model for steel surface defect detection[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 2510011 (2022-05-18). https://ieeexplore.ieee.org/document/9777969. [50] NI X, MA Z, LIU J, et al. Attention network for rail surface defect detection via consistency of intersection-over-union (IoU) -guided center-point estimation[J]. IEEE Transactions on Industrial Informatics, 2022, 18(3): 1694-1705 [51] LUO J, YANG Z, LI S, et al. FPCB surface defect detection: a decoupled two-stage object detection framework[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5012311 (2021-06-25). https://ieeexplore.ieee.org/document/9465824. [52] GAO Y, GAO L, LI X. A two-stage focal transformer for human-robot collaboration-based surface defect inspection[J]. ASME Journal of Manufacturing Science and Engineering, 2023: 1-32. [53] GAO L, ZHANG J, YANG C, et al. Cas-VSwin transformer: a variant swin transformer for surface-defect detection[J]. Computers in Industry, 2022, 140: 103689 (2022-11). [54] ZHOU H, YANG R, HU R, et al. ETDNet: Efficient Transformer-based detection network for surface defect detection[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2525014 (2023-08-23). https://ieeexplore.ieee.org/abstract/document/10227321 . [55] LU H, FANG M, QIU Y, et al. An anchor-free defect detector for complex background based on pixelwise adaptive multiscale feature fusion[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5002312 (2022-12-19). https://ieeexplore.ieee.org/document/9992183. [56] ZHANG K, LOU W, WANG J, et al. PA-DETR: End-to-end visually indistinguishable bolt defects detection method based on transmission line knowledge reasoning[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5016914 (2023-06-09). https://ieeexplore.ieee.org/document/10147381. [57] WANG C, XIE H. MeDERT: a metal surface defect detection model[J]. IEEE Access, 2023, 11: 35469-35478 [58] YUKSEL V, TETIK Y E, BASTURK M O, et al. A novel cascaded deep learning model for the detection and quantification of defects in pipelines via magnetic flux leakage signals[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2512709 (2023-05-02). https://doi.org/10.1109/TIM.2023.3272377. [59] SILVÉN O, NISKANEN M, KAUPPINEN H. Wood inspection with non-supervised clustering[J]. Machine Vision and Applications, 2003, 13(5-6): 275-285 [60] TABERNIK D, ŠELA S, SKVARČ J, et al. Segmentation-based deep-learning approach for surface-defect detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776 [61] LONG J, SHELHAMER E, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[C/OL]//Proceedings of the IEEE conference on computer vision and pattern recognition. New York: IEEE (2016-05-24) . https://ieeexplore.ieee.org/document/7478072. [62] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848 [63] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848 [64] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. (2017-06-17) . https://doi.org/10.48550/arXiv.1706.05587. [65] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[DB/OL]. (2015-05-18) . https://doi.org/10.48550/arXiv.1505.04597. [66] DONG H, SONG K, HE Y, et al. PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7448-7458 [67] LUO Q, SU J, YANG C, et al. CAT-EDNet: cross-attention transformer-based encoder-decoder network for salient defect detection of strip steel surface[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5009813(2022-04-14). https://ieeexplore.ieee.org/abstract/document/9757932. [68] ZHANG Q, LAI J, ZHU J, et al. Wavelet-guided promotion-suppression transformer for surface-defect detection[J]. IEEE Transactions on Image Processing, 2023, 32: 4517-4528 [69] WANG Y, NIU M, SONG K, et al. Normal-knowledge-based pavement defect segmentation using relevance-aware and cross-reasoning mechanisms[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(4): 4413-4427 [70] BOŽIČ J, TABERNIK D, SKOČAJ D. Mixed supervision for surface-defect detection: from weakly to fully supervised learning[DB/OL]. (2021-04-13). https://doi.org/10.1016/j.compind.2021.103459. [71] SAMPATH V, MAURTUA I, MARTÍN J J A, et al. Attention-guided multitask learning for surface defect identification[J]. IEEE Transactions on Industrial Informatics, 2023, 19(9): 9713-9721 [72] DU Z, GAO L, LI X. A new contrastive GAN with data augmentation for surface defect recognition under limited data[J/OL]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3502713 (2022-12-27). https://ieeexplore.ieee.org/document/9999697. [73] GAO Y, GAO L, LI X. A generative adversarial network based deep learning method for low-quality defect image reconstruction and recognition[J]. IEEE Transactions on Industrial Informatics, 2021, 17(5): 3231-3240 [74] JAIN S, SETH G, PARUTHI A, et al. Synthetic data augmentation for surface defect detection and classification using deep learning[J]. Journal of Intelligent Manufacturing, 2022, 33(4): 1007-1020 [75] MIRZA M, OSINDERO S. Conditional generative adversarial nets[DB/OL]. (2014-11-06) . https://doi.org/10.48550/arXiv.1411.1784. [76] CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets[DB/OL]. (2016-06-12). https://doi.org/10.48550/arXiv.1606.03657. [77] NIU S, LI B, WANG X, et al. Region- and strength-controllable GAN for defect generation and segmentation in industrial images[J]. IEEE Transactions on Industrial Informatics, 2022, 18(7): 4531-4541 |
[1] | LIU Mingming, YUAN Qi, YU Chunxia. A Multi-party Heterogeneous Evaluation Method for QoS Based on Z-RIM in Shared Manufacturing [J]. Industrial Engineering Journal, 2024, 27(1): 155-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||