[1]Macario A, Vitez T S, Dunn B, et al. Where are the costs in perioperative care? Analysis of hospital costs and charges for inpatient surgical care[J]. Anesthesiology,1995, 83(6):1138-1144.
[2]Jackson R L. The business of surgery. Managing the OR as a profit center requires more than just IT. It requires a profitmaking mindset, too.[J]. Health Management Technology,2002, 23(7):20-22.
[3]Strum D P, May J H, Sampson A R, et al. Estimating times of surgeries with two component procedures: comparison of the lognormal and normal models[J]. Anesthesiology, 2003, 98(1): 232-240.
[4]Spangler W E, Strum D P, Vargas L G, et al. Estimating procedure times for surgeries by determining location parameters for the lognormal model [J]. Health Care Management Science, 2004, 7(2): 97-104.
[5]Stepaniak P S, Heij C, De Vries G. Modeling and prediction of surgical procedure times[J]. Statistica Neerlandica,2010, 64(1): 1-18.
[6]Shukla R K, Ketcham J S, Ozcan Y A. Comparison of subjective versus data base approaches for improving efficiency of operating room scheduling [J]. Health Services Management Research,1990, 3(2): 74-81.
[7]Zhou J, Dexter F. Method to assist in the scheduling of addon surgical casesupper prediction bounds for surgical case durations based on the lognormal distribution. [J]. Anesthesiology. 1998, 89(5): 1228-1232.
[8]Combes C, Meskens N, Rivat C, et al. Using a KDD process to forecast the duration of surgery [J]. International Journal of Production Economics,2008, 112(1): 279-293.
[9]Devi S P, Rao K S, Sangeetha S S. Prediction of surgery times and scheduling of operation theaters in optholmology department[J]. Journal of Medical Systems, 2012, 36(2): 415430.
[10]Smola A J, Schoelkopf B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199-222.
[11]曾勍炜,徐知海,吴键. 基于粒子群优化和支持向量机的电力负荷预测[J]. 微电子学与计算机, 2011(1): 147-149.
Zeng Qing-wei, Xu Zhi-hai, Wu Jian. Forecasting of electricity load based on particle swarm optimization and support vector machine[J]. Microelectronics and Computer, 2011(1): 147-149.
[12]庄新妍. 遗传优化支持向量机在电力负荷预测中的应用[J]. 计算机仿真, 2012(3): 348-350.
Zhuang Xin-yan. Application of support vector machine optimized by Genetic algorithm in electric load prediction[J]. Computer simulation, 2012(3): 348350.
[13]李冬琴. 支持向量机回归方法在船价指数预测中的应用[J]. 船海工程,2009(2): 104-106.
Li dong-qin. Application of Support Vector Machine Regression method in prediction of Ship’s price index[J].Ship and ocean engineering,2009(2): 104106.
[14]唐小彪. 基于对应分析的支持向量机回归在地震储层厚度预测中的应用[J]. 物探与化探, 2009(4): 468-471.
Tang Xiao-biao. The application of the support vector machine regression based on corresponding analysis to the prediction of the seismic reservoir thickness[J].Geophysical and Geochemical Exploration, 2009(4): 468-471.
[15]张娟,孙剑. 基于SVM的城市快速路行程时间预测研究[J]. 交通运输系统工程与信息. 2011, 11(2): 174-179.
Zhang Juan, Sun Jian. Prediction of urban expressway travel time based on SVM[J]. Jorunal of Transportation Systems Engineering and Information Technology, 2011, 11(2): 174-179.
[16]叶创鑫,谭满春.基于SVM与人工神经网络组合模型的物流规划车辆行程时间预测[J]. 暨南大学学报:自然科学与医学版,2010, 31(5): 451-456.
Ye Chuang-xin,Tan Man-chun.Vehicle travel time prediction in logistics planning based on SVM and NN model[J].Jorunal of Jinan University: Natural Science, 2010,31(5):451-456.
|