[1] 王丰, 刘昊翔. 基于双层规划的老城区自行车专用道网络设计[J]. 交通运输工程与信息学报, 2022, 20(4): 72-87 WANG Feng, LIU Haoxiang. Design of bicycle lane network in China's old city based on bi-level programming[J]. Journal of Transportation Engineering and Information, 2022, 20(4): 72-87 [2] CHE A, ZHANG S, WU X. Energy-conscious unrelated parallel machine scheduling under time-of-use electricity tariffs[J]. Journal of Cleaner Production, 2017, 156: 688-697 [3] REGO M F, PINTO J C E, COTA L P, et al. A mathematical formulation and an NSGA-II algorithm for minimizing the makespan and energy cost under time-of-use electricity price in an unrelated parallel machine scheduling[J/OL]. PeerJ Computer Science, 2022 (2022-02-03). https://peerj.com/articles/cs-844/. [4] 樊小毛, 熊红林, 赵淦森. 带约束的清洁排班问题模型及其求解[J]. 计算机应用, 2021, 41(2): 577-582 FAN Xiaomao, XIONG Honglin, ZHAO Gansen. Cleaning scheduling model with constraints and its solution[J]. Journal of Computer Applications, 2021, 41(2): 577-582 [5] ARAMON B, TAVAKKOLI-MOGHADDAM R. A new branch-and-bound algorithm for the unrelated parallel machine scheduling problem with sequence-dependent setup times[J]. IFAC Proceedings Volumes, 2009, 42(4): 792-797 [6] 于军琪, 杨思远, 赵安军, 等. 基于神经网络的建筑能耗混合预测模型[J]. 浙江大学学报 (工学版) , 2022, 56(6): 1220-1231 YU Junqi, YANG Siyuan, ZHAO Anjun, et al. Hybrid prediction model of building energy consumption based on neural network[J]. Journal of Zhejiang University (Engineering Science) , 2022, 56(6): 1220-1231 [7] 张国辉, 胡一凡, 孙靖贺. 改进遗传算法求解多时间约束的柔性作业车间调度问题[J]. 工业工程, 2020, 23(2): 19-25 ZHANG Guohui, HU Yifan, SUN Jinhe. An improved genetic algorithm for flexible job shop scheduling problem with multiple time constraints[J]. Industrial Engineering Journal, 2020, 23(2): 19-25 [8] WANG Y, LI L. Manufacturing profit maximization under time-varying electricity and labor pricing[J]. Computers & Industrial Engineering, 2016, 104: 23-34 [9] 王玖河, 高辉, 刘欢. 基于遗传算法的共享助力车调度问题研究[J]. 工业工程, 2021, 24(1): 90-96 WANG Jiuhe, GAO Hui, LIU Huan. A research on shared motorcycle scheduling problem based on genetic algorithms[J]. Industrial Engineering Journal, 2021, 24(1): 90-96 [10] DU G, ZHANG Y, LIU X, et al. A review of leader-follower joint optimization problems and mathematical models for product design and development[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3405-3424 [11] LAI X, ZHANG K, LI Z, et al. Scheduling air conditioner testing tasks under time-of-use electricity tariff: a predictin and for optimization approach[J]. Computers & Industrial Engineering, 2023, 175: 108850 [12] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225 HAN Zhonghua. Research progress of Kriging model and surrogate optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 [13] CHEN C, LIU Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(99): 10-24 [14] ZHAO F, LIU Y, LIU H, et al. Broad learning approach to surrogate-assisted multi-objective evolutionary fuzzy clustering algorithm based on reference points for color image segmentation[J]. Expert Systems with Applications, 2022, 200: 117015 [15] 郭述臻, 昂海松, 蔡红明. 一种自适应抽样的代理模型构建及其在复材结构优化中的应用[J]. 复合材料学报, 2018, 35(8): 2084-2094 GUO Shuzhen, ANG Haisong, CAI Hongming. Construction of an adaptive sampling surrogate model and application in composite material structure optimization[J]. Acta Materiae Compositae Sinica, 2018, 35(8): 2084-2094 [16] 户佐安, 邹正丰, 包天雯. 基于BP神经网络的交通信息量预测方法[J]. 交通运输工程与信息学报, 2018, 16(4): 81-87 HU Zuoan, ZOU Zhengfeng, BAO Tianwen. Approach for prediction of traffic information volume based on BP neural network[J]. Journal of Transportation Engineering and Information, 2018, 16(4): 81-87 [17] 季长清, 高志勇, 秦静, 等. 基于卷积神经网络的图像分类算法综述[J]. 计算机应用, 2022, 42(4): 1044-1049 JI Changqing, GAO Zhiyong, QIN Jing, et al. Review of image classification algorithms based on convolutional neural network[J]. Journal of Computer Applications, 2022, 42(4): 1044-1049 [18] LIEU Q X, NGUYEN K T, DANG K D, et al. An adaptive surrogate model to structural reliability analysis using deep neural network[J]. Expert Systems with Applications, 2022, 189: 116104 [19] 任长娥, 袁超, 孙彦丽, 等. 宽度学习系统研究进展[J]. 计算机应用研究, 2021, 38(8): 2258-2267 REN Chang'e, YUAN Chao, SUN Yanli, et al. Research of broad learning system[J]. Application Research of Computers, 2021, 38(8): 2258-2267
|