[1] 王国彪, 何正嘉, 陈雪峰, 等. 机械故障诊断基础研究“何去何从”[J]. 机械工程学报, 2013, 49(1): 63-72 WANG Guobiao, HE Zhengjia, CHEN Xuefeng, et al. Basic research on machinery fault diagnosis—what is the prescription[J]. Journal of Mechanical Engineering., 2013, 49(1): 63-72 [2] QIAO W, LU D A survey on wind turbine condition monitoring and fault diagnosis—Part II: signals and signal processing methods [J]. IEEE Transactions on Industrial Electronics, 2015, 62 (10) : 6546-6557. [3] 童靳于, 罗金, 郑近德, 基于增强深度自编码网络的滚动轴承故障诊断方法[J]. 中国机械工程, 2021, 32 (21) : 2617-2624. TONG Jinyu, LUO Jin, ZHENG Jinde. Rolling bearing fault diagnosis method based on enhanced deep auto-encoder network[J]. China Mechanical Engineering, 2021, 32(21) : 2617-2624. [4] 张立智, 徐卫晓, 井陆阳, 等. 基于EMD-SVD和CNN的旋转机械故障诊断[J]. 振动、测试与诊断, 2020, 40(6): 1063-1070,1228 ZhANG Lizhi, XU Weixiao, JING Luyang, et al. Fault diagnosis of rotating machinery based on EMD-SVD and CNN[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6) :, 2020, 40(6): 1063-1070,1228 [5] AN F, WANG J. Rolling bearing fault diagnosis algorithm using overlapping group sparse-deep complex convolutional neural network[J]. Nonlinear Dynamics, 2022(108): 2353-2368 [6] PAO Y H, PARK G H, SOBAJIC D J. Learning and generalization characteristics of the random vector functional-link net[J]. Neurocomputing, 1994, 6(2): 163-180 [7] CHEN C L P, LIU Z. Broad learning system: an effective and efficient incremental learning system without the need for deep architecture[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1): 10-24 [8] CHEN C L P, WAN J Z. A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 1999, 29(1): 62-72 [9] XUE J, SHEN B. A novel swarm intelligence optimization approach: Sparrow Search Algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34 [10] 谷穗, 王红, 陈禹州. 双树复小波包与自适应排列熵在轴承故障诊断中的应用[J/OL]. 机械科学与技术: 1-8[2022-07-22]. DOI: 10.13433/j.cnki.1003-8728.20220050. [11] ZHANG C, DING S, ZHANG J, et al. Parallel stochastic configuration networks for large-scale data regression[J/OL]. Apply Soft Computing, 2021, 103: (2022-05-11). https://doi.org/10.1016/j.knosys.2022.108403. [12] 王承, 陈光, 谢永乐. 多层感知机在模拟/混合电路故障诊断中的应用[J]. 仪器仪表学报, 2005(6): 578-581 WANG Cheng, CHEN Guang, XIE Yongle. Applying MLPs to fault diagnosis in analog and mixed-signal circuits[J]. Chinese Journal of Scientific Instrument, 2005(6): 578-581 [13] 彭成, 王松松, 贺婧, 等. 基于离散小波变换和随机森林的轴承故障诊断研究[J]. 计算机应用研究, 2021, 38(1): 5 PENG Cheng, WANG Songsong, HE Jing, et al. Research on bearing fault diagnosis based on discrete wavelet transform and random forest[J]. Application Research of Computers, 2021, 38(1): 5 [14] 姚成玉, 来博文, 陈东宁, 等. 基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2017, 28(24): 3001-3012 YAO Chengyu, LAI Bowen, CHEN Dongning, et al. Fault diagnosis method based on MED-VMD and optimized SVM for rolling bearings[J]. China Mechanical Engineering, 2017, 28(24): 3001-3012
|