[1] 董海, 冯晔. 基于XGBoost的车身尺寸装配质量智能预测模型[J]. 工业工程,2021,24(3):77-82. DONG Hai, FENG Ye. An intelligent prediction model of body size assembly quality based on XGBoost algorithm[J]. Industrial Engineering Journal, 2021, 24(3): 77-82. [2] 高艺平, 王浩, 李新宇, 等. 基于深度智能视觉的表面缺陷检测研究进展[J]. 工业工程,2024,27(2):27-36. GAO Yiping, WANG Hao, LI Xinyu, et al. A review on surface defect detection based on deep intelligent vision[J]. Industrial Engineering Journal, 2024, 27(2): 27-36. [3] LIU J, ZHANG S, FAN H. A two-stage hybrid credit risk prediction model based on XGBoost and graph-based deep neural network[J]. Expert Systems with Applications, 2022, 195: 116624. [4] 李煜, 朱新亚, 刘景森. 求解高维复杂函数的改进飞蛾扑火算法[J]. 工业工程,2023,26(2):101-110. LI Yu, ZHU Xinya, LIU Jingsen. An improved moth-flame optimization algorithm for solving high-dimensional complex functions[J]. Industrial Engineering Journal, 2023, 26(2): 101-110. [5] 杨剑锋, 崔少红, 段家琦, 等. 基于SMOTE-IKPCA-SeNet深度迁移学习的小批量生产质量预测研究[J]. 工业工程,2024,27(2):98-106. YANG Jianfeng, CUI Shaohong, DUAN Jiaqi, et al. Quality prediction for small-batch production based on SMOTE-IKPCA-SeNet deep transfer learning[J]. Industrial Engineering Journal, 2024, 27(2): 98-106. [6] LIU S, WANG H, PENG W, et al. A surrogate-assisted evolutionary feature selection algorithm with parallel random grouping for high-dimensional classification[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1087-1101. [7] GUO Y, WANG W, WANG X. A robust linear regression feature selection method for data sets with unknown noise[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 31-44. [8] 王宁, 田淑珂, 刘玉敏, 等. 基于PLS-Aenet的多工序制造过程关键质量特性识别[J]. 中国管理科学,2024,32(4):271-278. WANG Ning, TIAN Shuke, LIU Yumin, et al. Identification of key quality characteristics in multistage manufacturing process based on PLS-Aenet[J]. Chinese Journal of Management Science, 2024, 32(4): 271-278. [9] LI A D, XUE B, ZHANG M. Multi-objective particle swarm optimization for key quality feature selection in complex manufacturing processes[J]. Information Sciences, 2023, 641: 119062. [10] SUN L, WANG X, DING W, et al. TSFNFS: two-stage-fuzzy-neighborhood feature selection with binary whale optimization algorithm[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 609-631. [11] 李瑾岳, 张鹏飞, 郭跃成, 等. 基于数字孪生的航空发动机配合界面装配分析[J/OL]. 航空学报, 2024 (2024-04-23). http://kns.cnki.net/kcms/detail/11.1929.V.20240422.0844.002.html. LI Jinyue, ZHANG Pengfei, GUO Yuecheng, et al. Assembly analysis of aero-engine mating interface based on digital twin[J/OL]. Acta Aeronautica et Astronautica Sinica, 2024 (2024-04-23). http://kns.cnki.net/kcms/detail/11.1929.V.20240422.0844.002.html. [12] 张譍之, 孙惠斌, 周平, 等. 数字孪生驱动的转静子装配间隙动态预测与调控[J]. 计算机集成制造系统,2023,29(6):2035-2046. ZHANG Yingzhi, SUN Huibin, ZHOU Ping, et al. Digital twin-driven dynamic prediction and control method for assembly clearance of multi-stage rotor and stator[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 2035-2046. [13] 丁司懿, 郑小虎. 基于改进Jacobian-Torsor理论的转子组件装配精度控制方法[J]. 航空学报,2021,42(10):429-453. DING Siyi, ZHENG Xiaohu. Precision control of rotor assembly based on improved Jacobian-Torsor theory[J]. Acta Aeronautica et Astronautica Sinica., 2021, 42(10): 429-453. [14] LI J, ZHAO G, ZHANG P, et al. A digital twin-based on-site quality assessment method for aero-engine assembly[J]. Journal of Manufacturing Systems, 2023, 71: 565-580. [15] 叶祎旎, 李艳婷. 基于CNN-集成学习的多风电机组故障诊断[J]. 工业工程,2022,25(1):136-143. YE Yini, LI Yanting. Fault diagnosis of multi wind turbine based on CNN-Ensemble learning[J]. Industrial Engineering Journal, 2022, 25(1): 136-143. [16] 刘海瑞, 武宪威, 李鹏, 等. 基于APSO-LSSVM的航空发动机轴承故障诊断及寿命预测[J]. 测控技术,2024,43(1):70-76. LIU Hairui, WU Xianwei, LI Peng, et al. Fault diagnosis and life prediction of aeroengine bearings based on APSO-LSSVM[J]. Measurement & Control Technology, 2024, 43(1): 70-76. [17] ZHANG H, WANG M, LI Z, et al. Semi-physical simulation of fan rotor assembly process optimization for unbalance based on reinforcement learning[J]. Aerospace, 2022, 9(7): 342. [18] LI R, SUN C, LIU Y, et al. Prediction of the parallelism error and unbalance of aero-engine rotors based on intelligent algorithm[J]. IEEE Transactions on Instrumentation and Measurement., 2023, 72: 1006510.
|