[1] WU X, SHEN X, LI C. The flexible job-shop scheduling problem considering deterioration effect and energy consumption simultaneously[J]. Computers & Industrial Engineering, 2019, 135: 1004-1024 [2] LIU S, PEI J, CHENG H, et al. Two-stage hybrid flow shop scheduling on parallel batching machines considering a job-dependent deteriorating effect and non-identical job sizes[J/OL]. (2019-11). https://doi.org/10.1016/j.asoc.2019.105701. [3] 黎阳, 李新宇, 牟健慧. 基于改进模拟退火算法的大规模置换流水车间调度[J]. 计算机集成制造系统, 2020, 26(2): 366-375 LI Yang, LI Xinyu, MOU Jianhui. Large-scale permutation flowshop scheduling method based on improved simulated annealing algorithm[J]. Computer Integrated Manufacturing Systems, 2020, 26(2): 366-375 [4] 刘翱, 冯骁毅, 邓旭东, 等. 求解零空闲置换流水车间调度问题的离散烟花算法[J]. 系统工程理论与实践, 2018, 38(11): 2874-2884 LIU Ao, FENG Xiaoyi, DENG Xudong, et al. A discrete fireworks algorithm for solving no-idle permutation flow shop problem[J]. Systems Engineering-TheoryPractice, 2018, 38(11): 2874-2884 [5] 郑永前, 李燕. 求解带缓冲区和机器可用性约束的非置换流水车间调度[J]. 东北大学学报(自然科学版), 2014, 35(9): 1329-1334, 1345 ZHENG Yongqian, LI Yan. Solution for non-permutation flow shop scheduling with buffers and machine availability constraints[J]. Journal of Northeastern University (Natural Science), 2014, 35(9): 1329-1334, 1345 [6] 肖鹏飞, 张超勇, 孟磊磊, 等. 基于深度强化学习的非置换流水车间调度问题[J]. 计算机集成制造系统, 2021, 27(1): 192-205 XIAO Pengfei, ZHANG Chaoyong, MENG Leilei, et al. Non-permutation flow shop scheduling problem based on deep reinforcement learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 192-205 [7] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67 [8] PETROVIC M, MILJKOVIC Z, JOKIC A. A novel methodology for optimal single mobile robot scheduling using whale optimization algorithm[J/OL]. (2019-08). https://doi.org/10.1016/j.asoc.2019.105520. [9] SINGH P, PRAKASH S. Optical network unit placement in Fiber-Wireless (FiWi) access network by whale optimization algorithm[J/OL]. (2019-11). https://doi.org/10.1016/j.yofte.2019.101965. [10] 闫旭, 叶春明, 姚远远. 量子鲸鱼优化算法求解作业车间调度问题[J]. 计算机应用研究, 2019, 36(4): 975-979 YAN Xu, YE Chunming, YAO Yuanyuan. Solving job-shop scheduling problem by quantum whale optimization algorithm[J]. Application Research of Computers, 2019, 36(4): 975-979 [11] 栾飞, 蔡宗琰, 吴书强, 等. 求解低碳车间调度问题的改进鲸鱼算法[J]. 机械科学与技术, 2020, 39(5): 721-728 LUAN Fei, CAI Zongyan, WU Shuqiang, et al. Improved whale optimization algorithm of scheduling problem for low carbon workshop[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(5): 721-728 [12] 陈辅斌, 李忠学, 杨喜娟. 基于改进NSGA2算法的多目标柔性作业车间调度[J]. 工业工程, 2018, 21(2): 55-61 CHEN Fubin, LI Zhongxue, YANG Xijuan. Multi-objective flexible job shop scheduling based on improved NSGA2 algorithm[J]. Industrial Engineering Journal, 2018, 21(2): 55-61 [13] 何桂霞. 特殊工艺约束下并行机多目标调度问题[J]. 工业工程, 2008, 11(6): 130-136 HE Guixia. Research on multi-objective scheduling problem subjected to special process constraint on parallel machines[J]. Industrial Engineering Journal, 2008, 11(6): 130-136 [14] GUPTA J N D, GUPTA S K. Single facility scheduling with nonlinear processing times[J]. Computers & Industrial Engineering, 1988, 14(4): 387-393 [15] YANG S, WANG J. Minimizing total weighted completion time in a two-machine flow shop scheduling under simple linear deterioration[J]. Applied Mathematics and Computation, 2011, 217(9): 4819-4826 [16] KUNNATHUR A S , GUPTA S K. Minimizing the makespan with late start penalties added to processing times in a single facility scheduling problem[J]. European Journal of Operational Research, 1990, 47(1): 56-64 [17] SUNDARARAGHAVAN P S, KUNNATHUR A S. Single machine scheduling with start time dependent processing times: some solvable cases[J]. European Journal of Operational Research, 1994, 78(3): 394-403 [18] 崔琪, 吴秀丽, 余建军. 变邻域改进遗传算法求解混合流水车间调度问题[J]. 计算机集成制造系统, 2017, 23(9): 1917-1927 CUI Qi, WU Xiuli, YU Jianjun. Improved genetic algorithm variable neighborhood search for solving hybrid flow shop scheduling problem[J]. Computer Integrated Manufacturing Systems, 2017, 23(9): 1917-1927 [19] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 [20] LU C, GAO L, PAN Q, et al. A multi-objective cellular grey wolf optimizer for hybrid flowshop scheduling problem considering noise pollution[J]. Applied Soft Computing, 2019, 75: 728-749 [21] 朱熠, 陈璐. 考虑准备时间的多目标混合流水车间调度[J]. 工业工程与管理, 2020, 25(4): 159-165 ZHU Yi, CHEN Lu. Multi-objective hybrid flow shop scheduling considering setup time[J]. Industrial Engineering and Management, 2020, 25(4): 159-165 [22] 李益兵, 黄炜星, 吴锐. 基于改进人工蜂群算法的多目标绿色柔性作业车间调度研究[J]. 中国机械工程, 2020, 31(11): 1344-1350, 1385 LI Yibing, HUANG Weixing, WU Rui. Multi-objective green flexible job-shop scheduling problem based on improved artificial bee colony algorithm[J]. China Mechanical Engineering, 2020, 31(11): 1344-1350, 1385
|