工业工程 ›› 2020, Vol. 23 ›› Issue (4): 131-139.doi: 10.3969/j.issn.1007-7375.2020.04.017

• 实践与应用 • 上一篇    下一篇

原油一次加工过程的多目标调度优化

侯艳1, 黄康焕1, 张亿仙1, 伍乃骐2   

  1. 广东工业大学 1.计算机学院;
    2. 机电工程学院,广东 广州 510006
  • 收稿日期:2019-05-14 发布日期:2020-08-21
  • 作者简介:侯艳(1977-),女,湖北省人,讲师,博士,主要研究方向为离散事件系统、生产计划与控制
  • 基金资助:
    国家自然科学基金资助项目(61603100);广东省重点领域研发计划项目(2020B010166006)

A Multi-objective Scheduling Optimization for Crude Oil Operations

HOU Yan1, HUANG Kanghuan1, ZHANG Yixian1, WU Naiqi2   

  1. 1. School of Computers;
    2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-05-14 Published:2020-08-21

摘要: 在制定原油一次加工过程详细调度时,往往需要考虑多个优化目标。本文提出一种基于改进的骨干粒子群算法和II代非支配遗传算法协同进化的双种群算法,并通过Pareto差熵控制种群的交流,优化了供油罐使用成本、供油罐的切换成本、管道中原油混合成本以及供油罐罐底混合成本4个目标。通过一个工业实例,将本文算法与现有的几种具有代表性的进化多目标优化算法进行对比,验证本文算法的可行性和有效性。

关键词: 原油处理, 高维多目标优化, 骨干粒子群算法, II代非支配遗传算法, Pareto差熵

Abstract: To detail the schedules for crude oil operations, it is necessary to optimize multiple objectives. A dual population algorithm is proposed,being called bare bone particle swarm optimization and NSGA-II algorithm, BPGA, which is based on the improved bare bone particle swarm optimization algorithm (I-BBPSO) and non-dominated sorting genetic algorithm II (NSGA-II). It controls population exchange through Pareto difference entropy, which optimizes all the costs of the charging tanks, switching the charging tanks, mixing crude oil in the pipeline and mixing crude oil in the bottom of the tanks. The proposed algorithm is applied to an industrial example and compared with several representative evolutionary multi-objective algorithms and shows its feasibility and validity .

Key words: crude oil operations, high-dimensional multi-objective optimization, bare bone particle swarm optimization algorithm, NSGA-II, Pareto difference entropy

中图分类号: