[1] 傅惠, 伍乃骐, 胡刚. 城市交通系统管理与优化研究综述[J]. 工业工程, 2016, 19(1): 10-15. FU Hui, WU Naiqi, HU Gang. An overview of management and optimization of urban transportation system[J]. Industrial Engineering Journal, 2016, 19(1): 10-15. [2] 高盛, 卢健松. 数字孪生城市建设的实践探索及推进建议[J]. 建筑经济,2024,45(2): 5-12.
GAO Sheng, LU Jiansong. Practical exploration and suggestions for promoting the construction of digital twin cities[J]. Construction Economy, 2024,45 (2): 5-12. [3] 董昕. 我国城市更新的现存问题与政策建议[J]. 建筑经济,2022,43(1): 27-31. DONG Xin. Existing problems and policy suggestions of urban renewal in China [J]. Construction Economy, 2022,43 (1): 27-31. [4] 刘小寒, 马晓磊, 刘钲可. 面向公共交通的电动自动驾驶模块车调度优化[J]. 中国公路学报, 2022, 35(3): 240-248. LIU Xiaohan, MA Xiaolei, LIU Zhengke. Dispatch optimization of electric autonomous modular vehicles for public transport[J]. China Journal of Highway and Transport, 2022, 35(3): 240-248. [5] LIAO Z, TAIEBAT M, XU M. Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits[J]. Applied Energy, 2021, 302: 117500. [6] SHI J, GAO Y, WANG W, et al. Operating electric vehicle fleet for ride-hailing services with reinforcement learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4822-4834. [7] 董海, 雷凤达. 基于萤火虫算法的动态车辆路径规划[J]. 工业工程, 2022, 25(6): 110-119. DONG Hai, LEI Fengda. Dynamic vehicle routing problem with time windows and capacity constraints based on coordinate firefly algorithm[J]. Industrial Engineering Journal, 2022, 25(6): 110-119. [8] LOWALEKAR M, VARAKANTHAM P, JAILLET P. ZAC: A zone path construction approach for effective real-time ridesharing[C]//Proceedings of the International Conference on Automated Planning and Scheduling Berkeley. California, Palo Alto: AAAI Press, 2019: 528-538. [9] 黄晓辉, 张雄, 杨凯铭, 等. 基于联合Q值分解的强化学习网约车订单派送[J]. 计算机工程, 2022, 48(12): 296-303. HUANG Xiaohui, ZHANG Xiong, YANG Kaiming, et al. Reinforcement learning online car-hailing order dispatch based on joint q-value decomposition[J]. Computer Engineering, 2022, 48(12): 296-303. [10] ALONSO-MORA J, SAMARANAYAKE S, WALLAR A, et al. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(3): 462-467. [11] HULAGU S, CELIKOGLU H B. An electric vehicle routing problem with intermediate nodes for shuttle fleets[J]. IEEE Transactions On Intelligent Transportation Systems, 2022, 23(2): 1223-1235. [12] JIAO Y, TANG X, QIN Z T, et al. Real-world ride-hailing vehicle repositioning using deep reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103289. [13] WANG Y, TONG Y, LONG C, et al. Adaptive dynamic bipartite graph matching: a reinforcement learning approach[C]//2019 IEEE 35th International Conference on Data Engineering (ICDE). New York: IEEE, 2019: 1478-1489. [14] WANG Z, QIN Z, TANG X, et al. Deep reinforcement learning with knowledge transfer for online rides order dispatching[C]//2018 IEEE International Conference on Data Mining (ICDM). New York: IEEE, 2018: 617-626. [15] SHAH S, LOWALEKAR M, VARAKANTHAM P. Neural approximate dynamic programming for on-demand ride-pooling[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 507-515. [16] JAMSHIDI H, CORREIA G, ESSEN T V, et al. Dynamic planning for simultaneous recharging and relocation of shared electric taxies: a sequential MILP approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 125(PD): 102933. [17] DENG J L, HU H, GONG S C, et al. Impacts of charging pricing schemes on cost-optimal logistics electric vehicle fleet operation[J]. Transportation Research Part D: Transport and Environment, 2022, 109: 103333. [18] ALFAVERH F, DENAI M, SUN Y C. Optimal vehicle-to-grid control for supplementary frequency regulation using deep reinforcement learning[J]. Electric Power Systems Research, 2023, 214: 108949. [19] IACOBUCCI R, BRUNO R, SCHMÖCKER J. An integrated optimisation-simulation framework for scalable smart charging and relocation of shared autonomous electric vehicles[J]. Energies, 2021, 14(12): 1-22. [20] HANSEN N A, SU H, WANG X. Temporal difference learning for model predictive control[C]//Proceedings of the 39th International Conference on Machine Learning. Baltimore, Maryland. PMLR: 2022: 8387-8406. [21] 深圳市发展和改革委员会. 深圳市发展和改革委员会关于进一步完善我市峰谷分时电价政策有关问题的通知[EB/OL]. (2021-12-28) [2023-05-11]. http://www.sz.gov.cn/cn/xxgk/zfxxgj/tzgg/content/post_9493597.html. [22] CHEN T D, KOCKELMAN K M, HANNA J P. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions[J]. Transportation Research Part A: Policy and Practice, 2016, 94: 243-254.
|