[1] GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: a survey[J]. Annals of Discrete Mathematics, 1979, 5: 287-326 [2] 唐恒永, 赵传立. 排序引论[M]. 北京: 科学出版社, 2002. [3] VALLADA E, RUIZ R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence dependent setup times[J]. European Journal of Operational Research, 2011, 211(3): 612-622 [4] LIN Y K, LIN C W. Dispatching rules for unrelated parallel machine scheduling with release dates[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67: 269-279 [5] 邓冠龙, 顾幸生, 崔喆. 基于群智能优化的车间调度方法[M]. 北京: 清华大学出版社, 2016. [6] EZUGWU A E, ADELEKE O J, VIRIRI S. Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with sequence-dependent setup times[J]. Plos One, 2018, 13(7): e0200030_1-e0200030_23 [7] KIM D W, KIM K H, JANG W, et al. Unrelated parallel machine scheduling with setup times using simulated annealing[J]. Robotics and Computer-Integrated Manufacturing, 2002, 18(3-4): 223-231 [8] ZEIDI J R, MOHAMMADHOSSEINI S. Scheduling unrelated parallel machines with sequence-dependent setup times[J]. International Journal of Advanced Manufacturing Technology, 2015, 81: 1487-1496 [9] 王凌, 郑大钟. 一种GASA混合优化策略[J]. 控制理论与应用, 2008, 18(4): 552-554 WANG Ling, ZHENG Dazhong. A kind of GASA hybrid optimization strategy[J]. Control Theory and Applications, 2008, 18(4): 552-554 [10] 李作成, 钱斌, 胡蓉, 等. 遗传-分布估计算法求解化工生产中一类带多工序的异构并行机调度问题[J]. 化工学报, 2014, 65(3): 981-992 LI Zuocheng, QIAN Bing, HU Rong, et al. A genetic algorithm-estimation of distribution algorithm for a kind of heterogeneous parallel machine scheduling problem with multiple operations in chemical production[J]. CIESC Journal, 2014, 65(3): 981-992 [11] JOO C M, KIM B S. Hybrid genetic algorithms with dispatching rules for unrelated parallel machine scheduling with setup time and production availability[J]. Computers & Industrial Engineering, 2015, 85: 102-109 [12] AFZALIRAD M, SHAFIPOUR M. Design of an efficient genetic algorithm for resource-constrained unrelated parallel machine scheduling problem with machine eligibility restrictions[J]. Journal of Intelligent Manufacturing, 2015, 29: 423-437 [13] RUIZ R, STUTZLE T. A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[J]. European Journal of Operational Research, 2007, 177(3): 2033-2049 [14] RODRIGUEZ F, LOZANO M, BLUM C, et al. An iterated greedy algorithm for the large-scale unrelated parallel machines scheduling problem[J]. Computers & Operations Research, 2013, 40(7): 1829-1841 [15] FRAMINAN J M, LEISTEN R, RAJENDRAN C. Different initial sequences for the heuristic of NAWAZ, ENSCORE and HAM to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem[J]. International Journal of Production Research, 2003, 41(1): 121-148 [16] HOLLAND J H. Adaptation in natural and artificial systems[M]. Boston, USA: MIT Press, 1992. [17] 王凌. 车间调度及其遗传算法[M]. 北京: 清华大学出版社, 2003. [18] DURASEVIC M, JAKOBOVIC D. A survey of dispatching rules for the dynamic unrelated machines environment[J]. Expert Systems with Applications, 2018, 113: 555-569
|