[1] ZADEH L A. Fuzzy sets[J]. Information & Control, 1965, 8(3): 338-353 [2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets Systems, 1986, 20: 87-96 [3] YAGER R. Pythagorean membership grades in multi-criteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(4): 958-965 [4] YAGER R. Generalized orthopair fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1222-1230 [5] ATANASSOV K, GARGOV G. Interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31(3): 343-349 [6] GARG H. A novel accuracy function under interval-valued Pythagorean fuzzy environment for solving multicriteria decision making problem[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(1): 529-540 [7] JOSHI B, SINGH A, BHATT P, et al. Interval valued q-rung orthopair fuzzy sets and their properties[J]. Journal of Intelligent & Fuzzy Systems, 2018, 35: 5225-5230 [8] WANG J, GAO H, WEI G W, et al. Methods for multiple-attribute group decision making with q-rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers[J]. Symmetry, 2019, 11(1): 56 [9] LIU L M, CAO W Z, SHI B, et al. Large-scale green supplier selection approach under a q-rung interval-valued orthopair fuzzy environment[J]. Processes, 2019, 7(9): 573 [10] GARG H. A new possibility degree measure for interval‐valued q‐rung orthopair fuzzy sets in decision‐making[J]. International Journal of Intelligent Systems., 2020, 36(1): 526-557 [11] ZHANG X, YUE G, TENG Z. Possibility degree of interval- valued intuitionistic fuzzy numbers and its application[C/OL]//Proceedings of the International Symposium on Information processing (ISIP 2009), 2019: 33-36 (2009-08-23). https://citeseerx.ist.psu.edu/doc/10.1.1.402.7091. [12] WAN S, DONG J. A possibility degree method for interval- valued intuitionistic fuzzy multi-attribute group decision making[J]. Journal of Computer and System Sciences, 2014, 80(1): 237-256 [13] CHEN T Y. Interval-valued intuitionistic fuzzy QUALIFLEX method with a likelihood-based comparison approach for multiple criteria decision analysis[J]. Information Science, 2014, 261: 149-169 [14] KUMAR S, BISWAS A. Use of possibility measures for ranking of interval valued intuitionistic fuzzy numbers in solving multi-criteria decision making problems[C/OL]// International Conference on Computational Intelligence, Communications, and Business Analytics, 2017: 153-167(2017-09-26). https://doi.org/10.1007/978-981-10-6430-2_13. [15] 刘久兵, 彭莉莎, 李华雄, 等. 考虑权重信息未知的区间直觉模糊三支群决策方法[J]. 运筹与管理, 2022, 31(7): 50-57 LIU Jiubing, PENG Lisha, LI Huaxiong, et al. Interval-valued intuitionistic fuzzy three-way group decisions considering the unknown weight information[J]. Operations Research and Management Science, 2022, 31(7): 50-57 [16] MU Z M, ZENG S Z, WANG P Y. Novel approach to multi-attribute group decision-making based on interval-valued Pythagorean fuzzy power Maclaurin symmetric mean operator[J]. Computers & Industrial Engineering, 2021, 155: 107049 [17] 彭友, 刘晓鹤, 孙健博. 区间直觉模糊数环境下基于犹豫度和相关系数的多属性群决策模型研究[J]. 中国管理科学, 2021, 29(8): 229-240 PENG You, LIU Xiaohe, SUN Jianbo. Interval-valued intuitionistic fuzzy multi-attribute group decision making approach based on the hesitancy degrees and correlation coefficient[J]. Chinese Journal of Management Science, 2021, 29(8): 229-240 [18] 江国卉, 王子豪, 林志超, 等. 一种基于区间q-rung Orthopair模糊投影模型的多属性群决策方法[J]. 模糊系统与数学, 2022, 36(4): 50-60 JIANG Guohui, WANG Zihao, LIN Zhichao, et al. A multiple attribute group decision-making method based on q-rung interval-valued orthopair fuzzy projection model[J]. Fuzzy Systems and Mathematics, 2022, 36(4): 50-60 [19] GAO H, RAN L, WEI G, et al. VIKOR method for MAGDM based on q-rung interval-valued orthopair fuzzy information and its application to supplier selection of medical consumption products[J]. International Journal of Environmental Research and Public Health, 2020, 17(2): 525 [20] 徐泽水. 模糊互补判断矩阵排序的一种算法[J]. 系统工程学报, 2001, 16(4): 311-314 XU Zeshui. Algorithm for priority of fuzzy complementary judgment matrix[J]. Journal of Systems Engineering, 2001, 16(4): 311-314
|