[1] 中国风电产业发展现状及前景展望(下)[J]. 电器工业, 2019 (9): 32-46. [2] SIMANI S, CASTALDI P, TILLI A. Data-driven approach for wind turbine actuator and sensor fault detection and isolation[J]. IFAC Proceedings Volumes, 2011, 44(1): 8301-8306 [3] LYDIA M, SURESH KUMAR S, IMMANUEL SELVAKUMAR A, et al. Wind farm power prediction based on wind speed and power curve models[M].BHUVANESWARI M, SAXENA J. Intelligent and efficient electrical systems. New York: Springer, 2018: 15-24. [4] XIANG Y, VEERAMACHANENI K, YAN Y, et al. Unsupervised learning and fusion for failure detection in wind turbines[C]// 2009 12th International Conference on Information Fusion. Seattle, WA: IEEE, 2009: 1497-1503. [5] PISU P, AYALEW B. Robust fault diagnosis for a horizontal axis wind turbine[J]. IFAC Proceedings Volumes, 2011, 44(1): 7055-7060 [6] 王旭, 孟克其劳, 张占强, 等. 基于Matlab的风力发电机组电能质量测量[J]. 太阳能学报, 2019, 40(5): 1387-1393 WANG Xu, MENGKE Qilao, ZHANG Zhanqiang, et al. Power quality measurement of wind turbines based on matlab[J]. Acta Energiae Solaris Sinica, 2019, 40(5): 1387-1393 [7] WANG H, LISERRE M, BLAABJERG F. Toward reliable power electronics: challenges, design tools, and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7: 17-26 [8] JONES R M. Enveloping for bearing analysis[J]. Journal of Sound and Vibration, 1996, 30: 10-15 [9] LU D, QIAO W, GONG X, et al. Current-based fault detection for wind turbine systems via Hilbert-Huang transform[C]// Proceedings of the 2013 IEEE Power & Energy Society General Meeting. Vancouver, BC, Canada: IEEE, 2013: 1-5. [10] LI Y, LIU S, SHU L. Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data[J]. Renewable Energy, 2019, 134: 357-366 [11] TANG B, SONG T, LI F, et al. Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine[J]. Renewable Energy, 2014, 62: 1-9 [12] 刘晶, 季海鹏. 基于神经网络的关联规则在故障诊断中的应用[J]. 工业工程, 2011, 14(2): 118-121 LIU Jing, JI Haipeng. Neural network based association rules for fault diagnosis[J]. Industrial Engineering Journal, 2011, 14(2): 118-121 [13] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 [14] BACH-ANDERSEN M, RØMER-ODGAARD B, WINTHER O. Deep learning for automated drivetrain fault detection[J]. Wind Energy, 2018, 21: 29-41 [15] HARRINGTON P. Machine learning in action[M]. New York: Manning Publications, 2012: 269-272. [16] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2011, 16(1): 321-357 [17] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324 [18] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90 [19] WANG G, SUN J, MA J, et al. Sentiment classification: the contribution of ensemble learning[J]. Decision Support System, 2014, 57: 77-93 [20] FREUND Y, SCHAPIRE R E. A Decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139 [21] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24: 123-140
|