[1] HOTELLING H. Multivariate quality control[J]. Techniques of Statistical Analysis, 1947, 31(3):17-20 [2] CROSIER R B. Multivariate generalizations of cumulative sum quality-control schemes[J]. Technometrics, 1988, 30(3):291-303 [3] LOWRY C A, WOODALL W H, CHAMP C W, et al. A multivariate exponentially weighted moving average control chart[J]. Technometrics, 1992, 34(1):46-53 [4] GUH R S, SHIUE Y R. An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts[J]. Computers and Industrial Engineering, 2008, 55(2):475-493 [5] HE S, HE Z, WANG G A. Online monitoring and fault identification of mean shifts in bivariate processes using decision learning techniques[J]. Journal of Intelligent Manufacturing, 2013, 24(1):25-34 [6] 赵永满, 何桢, 何曙光, 等. 基于PSO的支持向量机多元控制图均值偏移诊断模型[J]. 天津大学学报(自然科学与工程技术版), 2013, 5(1):469-475 ZHAO Yongman, HE Zhen, HE Shuguang, et al. Support vector machine based on particle swarm optimization for monitoring mean shift signals in multivariate control charts[J]. Journal of Tianjin University(Science and Technology), 2013, 5(1):469-475 [7] DENG H, RUNGER G, TUV E. System monitoring with real-time contrasts[J]. Journal of Quality Technology, 2012, 44(1):9-27 [8] SUKCHOTRAT T, KIM S B, TSUNG F. One-class classification-based control charts for multivariate process monitoring[J]. ⅡE Transactions, 2010, 42(2):107-120 [9] 李钢, 代海飞. 小批量多元控制图建模方法研究[J]. 计算机应用, 2008, 28(10):2718-2720 LI Gang, DAI Haifei. Modeling method of multivariate statistical control chart for small-batch manufacturing process quality[J]. Journal of Computer Applications, 2008, 28(10):2718-2720 [10] VAPNIK V N. Statistical Learning Theory[M]. New York:Wiley, 1998. [11] SUYKENS J A K, VANDEWALLE J. Training multilayer perceptron classifiers based on a modified support vector method[J]. IEEE Transactions on Neural Networks, 1999, 10(1):907-912 [12] GESTEL T V, MOORE B D. Benchmarking least squares support vector machine classifiers[J]. Machine Learning, 2004, 54(1):5-32 [13] LI Y, LIN C, ZHANG W. Improved sparse least-squares support vector machine classifiers[J]. Neurocomputing, 2006, 69(1):1655-1658 [14] ÜBEYLÏ E D. Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals[J]. Expert Systems with Applications, 2010, 37(1):233-239
|