[1] 董昱, 陈星. 基于粗糙集和模糊认知图的ZPW-2000轨道电路故障诊断[J]. 铁道学报, 2018, 40(6): 83-9 DONG Yu, CHEN Xing. Fault diagnosis of ZPW-2000 rail circuit based on rough set and fuzzy cognitive graph[J]. Journal of Railways, 2018, 40(6): 83-9 [2] 李长春, 赵林海. 基于LightGBM算法的25Hz相敏轨道电路故障诊断方法优化[J]. 铁道学报, 2022, 44(8): 68-77 LI Changchun, ZHAO Linhai. Optimization of 25Hz phase-sensitive rail circuit fault diagnosis method based on LightGBM algorithm[J]. Journal of Railway, 2022, 44(8): 68-77 [3] SUN S, ZHAO H. Fault diagnosis in railway track circuits using support vector machines[C]//2013 12th International Conference on Machine Learning and Applications. IEEE, 2013, 2: 345-350. [4] MA Q, HE Y, ZHOU F. A new decision tree approach of support vector machine for analog circuit fault diagnosis[J]. Analog Integrated Circuits and Signal Processing, 2016, 88(3): 455-463 [5] YUAN X, LIU Z, MIAO Z, et al. Fault diagnosis of analog circuits based on IH-PSO optimized support vector machine[J]. IEEE Access, 2019, 7: 137945-137958 [6] 林俊亭, 王帅. 基于DBN-MPA-LSSVM的无绝缘轨道电路故障诊断研究[J]. 电子测量与仪器学报, 2022, 36(9): 37-44 LIN Junting, WANG Shuai. Research on fault diagnosis of uninsulated rail circuits based on DBN-MPA-LSSVM[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(9): 37-44 [7] 卢皎, 禹建丽, 黄春雷, 等. 基于卷积神经网络的ZPW-2000R轨道电路智能故障诊断方法[J]. 工业工程, 2021, 24(4): 127-33 LU Jiao, YU Jianli, HUANG Chunlei, et al. Intelligent fault diagnosis method of ZPW-2000R rail circuit based on convolutional neural network[J]. Industrial Engineering Journal, 2021, 24(4): 127-33 [8] 田粉霞, 杨世武, 崔勇, 等. 基于改进卷积神经网络的无绝缘轨道电路调谐区故障诊断[J]. 铁路计算机应用, 2020, 29(6): 58-63+74 TIAN Fenxia, YANG Shiwu, CUI Yong, et al. Improved convolutional neural network-based fault diagnosis in tuned areas of uninsulated rail circuits[J]. Railroad Computer Applications, 2020, 29(6): 58-63+74 [9] 朱文博, 王小敏. 基于组合决策树的无绝缘轨道电路故障诊断方法研究[J]. 铁道学报, 2018, 40(7): 74-9 ZHU Wenbo, WANG Xiaomin. Research on fault diagnosis method of uninsulated rail circuit based on combined decision tree[J]. Journal of Railways, 2018, 40(7): 74-9 [10] 宋威, 林建维, 周方泽, 等. 基于改进降噪自编码器的风机轴承故障诊断方法[J]. 电力系统保护与控制, 2022, 50(10): 61-68 SONG Wei, LIN Jianwei, ZHOU Fangze, et al. Fault diagnosis method for wind turbine bearings based on improved noise-reducing self-encoder[J]. Power System Protection and Control, 2022, 50(10): 61-68 [11] 张洪亮, 余其源, 王锐. 跳连接变分自编码器与CNN相结合的滚动轴承故障诊断方法[J/OL]. 机械科学与技术: 1-8 (2022-10-14)[2023-3-03-27]. https://doi.org/10.13433/j.cnki.1003-8728.20220273. ZHANG Hongliang, YU Qiyuan, WANG Rui. A rolling bearing fault diagnosis method combining jump-connected variational self-encoder and CNN [J/OL]. Mechanical Science and Technology: 1-8 (2022-10-14) [2023-03-27]. https://doi.org/10.13433/j.cnki.1003-8728.20220273. [12] 王秋实, 王小敏. 基于FTA与改进神经网络的轨道电路红光带诊断方法[J]. 铁道标准设计, 2017, 61(4): 147-153 WANG Qiushi, WANG Xiaomin. A red light band diagnosis method for rail circuit based on FTA and improved neural network[J]. Railway Standard Design, 2017, 61(4): 147-153 [13] STEINWART I, CHRISTMANN A. Support vector machines [M]. Berlin: Springer Science & Business Media, 2008. [14] 彭彬森, 夏虹, 王志超, 等. 深度神经网络在滚动轴承故障诊断中的应用[J]. 哈尔滨工业大学学报, 2021, 53(6): 155-162 PENG Binsen, XIA Hong, WANG Zhichao, et al. Application of deep neural network in rolling bearing fault diagnosis[J]. Journal of Harbin Institute of Technology, 2021, 53(6): 155-162 [15] ZHENG Z, DAI S, XIE X. Research on fault detection for ZPW-2000A jointless track circuit based on deep belief network optimized by improved particle swarm optimization algorithm[J]. IEEE Access, 2020, 8: 175981-175997 [16] KHAN M A, ABU-KHADRAH A, SIDDIQUI S Y, et al. Support-Vector-Machine-based Adaptive Scheduling in Mode 4 Communication[J]. Computers, Materials & Continua, 2022, 73(2): 3319-3331 [17] ROY A, CHAKRABORTY S. Support Vector Machine in Structural Reliability Analysis: A Review[J]. Reliability Engineering & System Safety, 2023, 233: 109119-109126 [18] SHIM K, DO T N, NGUYEN T-V, et al. Enhancing PHY-Security of FD-Enabled NOMA Systems Using Jamming and User Selection: Performance Analysis and DNN Evaluation[J]. IEEE Internet of Things Journal, 2021, 8(24): 17476-17494 [19] 孟庆成, 万达, 吴浩杰, 等. 基于卷积神经网络的混凝土裂缝图像识别方法[J]. 沈阳建筑大学学报 (自然科学版), 2021, 37(5): 832-840 MENG Qingcheng, WAN Da, WU Haojie, et al. Convolutional neural network based concrete crack image recognition method[J]. Journal of Shenyang University of Architecture (Natural Science Edition), 2021, 37(5): 832-840
|